Spelling suggestions: "subject:"traitement dde signal sur graphe"" "subject:"traitement dee signal sur graphe""
1 |
Signal Processing on Graphs - Contributions to an Emerging Field / Traitement du signal sur graphes - Contributions à un domaine émergentGirault, Benjamin 01 December 2015 (has links)
Ce manuscrit introduit dans une première partie le domaine du traitement du signal sur graphe en commençant par poser les bases d'algèbre linéaire et de théorie spectrale des graphes. Nous définissons ensuite le traitement du signal sur graphe et donnons des intuitions sur ses forces et faiblesses actuelles comparativement au traitement du signal classique. En seconde partie, nous introduisons nos contributions au domaine. Le chapitre 4 cible plus particulièrement l'étude de la structure d'un graphe par l'analyse des signaux temporels via une transformation graphe vers série temporelle. Ce faisant, nous exploitons une approche unifiée d'apprentissage semi-supervisé sur graphe dédiée à la classification pour obtenir une série temporelle lisse. Enfin, nous montrons que cette approche s'apparente à du lissage de signaux sur graphe. Le chapitre 5 de cette partie introduit un nouvel opérateur de translation sur graphe définit par analogie avec l'opérateur classique de translation en temps et vérifiant la propriété clé d'isométrie. Cet opérateur est comparé aux deux opérateurs de la littérature et son action est décrite empiriquement sur quelques graphes clés. Le chapitre 6 décrit l'utilisation de l'opérateur ci-dessus pour définir la notion de signal stationnaire sur graphe. Après avoir étudié la caractérisation spectrale de tels signaux, nous donnons plusieurs outils essentiels pour étudier et tester cette propriété sur des signaux réels. Le dernier chapitre s'attache à décrire la boite à outils \matlab développée et utilisée tout au long de cette thèse. / This dissertation introduces in its first part the field of signal processing on graphs. We start by reminding the required elements from linear algebra and spectral graph theory. Then, we define signal processing on graphs and give intuitions on its strengths and weaknesses compared to classical signal processing. In the second part, we introduce our contributions to the field. Chapter 4 aims at the study of structural properties of graphs using classical signal processing through a transformation from graphs to time series. Doing so, we take advantage of a unified method of semi-supervised learning on graphs dedicated to classification to obtain a smooth time series. Finally, we show that we can recognize in our method a smoothing operator on graph signals. Chapter 5 introduces a new translation operator on graphs defined by analogy to the classical time shift operator and verifying the key property of isometry. Our operator is compared to the two operators of the literature and its action is empirically described on several graphs. Chapter 6 describes the use of the operator above to define stationary graph signals. After giving a spectral characterization of these graph signals, we give a method to study and test stationarity on real graph signals. The closing chapter shows the strength of the matlab toolbox developed and used during the course of this PhD.
|
2 |
Extending convolutional neural networks to irregular domains through graph inference / Extension des réseaux de neurones convolutifs à des domaines irréguliers par l’inférence de graphePasdeloup, Bastien 12 December 2017 (has links)
Tout d'abord, nous présentons des méthodes permettant d'inférer un graphe à partir de signaux, afin de modéliser le support des données à classifier. Ensuite, des translations préservant les voisinages des sommets sont identifiées sur le graphe inféré. Enfin, ces translations sont utilisées pour déplacer un noyau convolutif sur le graphe, afin dedéfinir un réseau de neurones convolutif adapté aux données d'entrée.Nous avons illustré notre méthodologie sur une base de données d'images. Sans utiliser de connaissances sur les signaux, nous avons pu inférer un graphe proche d'une grille. Les translations sur ce graphe sont proches des translations Euclidiennes, ce qui nous a permis de définir un réseau de neurones convolutif très similaire à ce que l'on aurait pu obtenir en utilisant l'information que les signaux sont des images. Ce réseau, entraîné sur les données initiales, a dépassé lesperformances des méthodes de l'état de l'art de plus de 13 points, tout en étant simple et facilement améliorable.La méthode que nous avons introduite est une généralisation des réseaux de neurones convolutifs, car ceux-ci sont des cas particuliers de notre approche quand le graphe est une grille. Nos travaux ouvrent donc de nombreuses perspectives, car ils fournissent une méthode efficace pour construire des réseaux adaptés aux données. / This manuscript sums up our work on extending convolutional neuralnetworks to irregular domains through graph inference. It consists of three main chapters, each giving the details of a part of a methodology allowing the definition of such networks to process signals evolving on graphs with unknown structures.First, graph inference from data is explored, in order to provide a graph modeling the support of the signals to classify. Second, translation operators that preserve neighborhood properties of the vertices are identified on the inferred graph. Third, these translations are used to shift a convolutional kernel on the graph in order to define a convolutional neural network that is adapted to the input data.We have illustrated our methodology on a dataset of images. While not using any particular knowledge on the signals, we have been able to infer a graph that is close to a grid. Translations on this graph resemble Euclidean translations. Therefore, this has allowed us to define an adapted convolutional neural network that is very close what one would obtain when using the information that signals are images. This network, trained on the initial data, has out performed state of the art methods by more than 13 points, while using a very simple and easily improvable architecture.The method we have introduced is a generalization of convolutional neural networks. As a matter of fact, they can be seen as aparticularization of our approach in the case where the graph is a grid. Our work thus opens the way to numerous perspectives, as it provides an efficient way to build networks that are adapted to the data.
|
Page generated in 0.1215 seconds