Spelling suggestions: "subject:"trajectory estimation"" "subject:"rajectory estimation""
1 |
Continuous-time Trajectory Estimation and its Application to Sensor Calibration and Differentially Flat SystemsJohnson, Jacob C. 14 August 2023 (has links) (PDF)
State estimation is an essential part of any robotic autonomy solution. Continuous-time trajectory estimation is an attractive method because continuous trajectories can be queried at any time, allowing for fusion of multiple asynchronous, high-frequency measurement sources. This dissertation investigates various continuous-time estimation algorithms and their application to a handful of mobile robot autonomy and sensor calibration problems. In particular, we begin by analyzing and comparing two prominent continuous-time trajectory representations from the literature: Gaussian processes and splines, both on vector spaces and Lie groups. Our comparisons show that the two methods give comparable results so long as the same measurements and motion model are used. We then apply spline-based estimation to the problem of calibrating the extrinsic parameters between a camera and a GNSS receiver by fusing measurements from these two sensors and an IMU in continuous-time. Next, we introduce a novel estimation technique that uses the differential flatness property of dynamic systems to model the continuous-time trajectory of a robot on its flat output space, and show that estimating in the flat output space can provide superior accuracy and computation time than estimating on the configuration manifold. We use this new flatness-based estimation technique to perform pose estimation for velocity-constrained vehicles using only GNSS and IMU and show that modeling on the flat output space renders the global heading of the system observable, even when the motion of the system is insufficient to observe attitude from the measurements alone. We then show how flatness-based estimation can be used to calibrate the transformation between the dynamics coordinate frame and the coordinate frame of a sensor, along with other sensor-to-dynamics parameters, and use this calibration to improve the performance of flatness-based estimation when six-degree-of-freedom measurements are involved. Our final contribution involves nonlinear control of a quadrotor aerial vehicle. We use Lie theoretic concepts to develop a geometric attitude controller that utilizes logarithmic rotation error and prove that this controller is globally-asymptotically stable. We then demonstrate the ability of this controller to track highly-aggressive quadrotor trajectories.
|
2 |
Detecting Successful ThrowsAlmousa, Sami, Morad, Gorgis January 2023 (has links)
This project aims to create a robot system that can accurately figure out if the throws are successful. This can help make various industrial tasks more efficient. The system uses implemented methods to process data from fisheye camera data and depth sensor data, to check the quality of the throws. The main goal is to find out if the thrown object reaches its target or not, with more advanced tasks including predicting its path when frames are lost or not tracked properly.To put the system together the Robot Operating System (ROS) was used for handling data and processing, as well as different tools and techniques, like bag files and OpenCV. A variety of methods and algorithms were used to apply background subtraction, clustering, curve fitting, marking objects and drawing the path they take in the air. The depth sensor data processing is included to make up for the limitations of 2D camera data, providing more accurate and reliable tracking of thrown objects.
|
3 |
A proposal to estimate the motion of an underwater vehicle through visual mosaickingGarcía Campos, Rafael 17 December 2001 (has links)
This thesis proposes a solution to the problem of estimating the motion of an Unmanned Underwater Vehicle (UUV). Our approach is based on the integration of the incremental measurements which are provided by a vision system. When the vehicle is close to the underwater terrain, it constructs a visual map (so called "mosaic") of the area where the mission takes place while, at the same time, it localizes itself on this map, following the Concurrent Mapping and Localization strategy. The proposed methodology to achieve this goal is based on a feature-based mosaicking algorithm. A down-looking camera is attached to the underwater vehicle. As the vehicle moves, a sequence of images of the sea-floor is acquired by the camera. For every image of the sequence, a set of characteristic features is detected by means of a corner detector. Then, their correspondences are found in the next image of the sequence. Solving the correspondence problem in an accurate and reliable way is a difficult task in computer vision. We consider different alternatives to solve this problem by introducing a detailed analysis of the textural characteristics of the image. This is done in two phases: first comparing different texture operators individually, and next selecting those that best characterize the point/matching pair and using them together to obtain a more robust characterization. Various alternatives are also studied to merge the information provided by the individual texture operators. Finally, the best approach in terms of robustness and efficiency is proposed.After the correspondences have been solved, for every pair of consecutive images we obtain a list of image features in the first image and their matchings in the next frame. Our aim is now to recover the apparent motion of the camera from these features. Although an accurate texture analysis is devoted to the matching pro-cedure, some false matches (known as outliers) could still appear among the right correspon-dences. For this reason, a robust estimation technique is used to estimate the planar transformation (homography) which explains the dominant motion of the image. Next, this homography is used to warp the processed image to the common mosaic frame, constructing a composite image formed by every frame of the sequence. With the aim of estimating the position of the vehicle as the mosaic is being constructed, the 3D motion of the vehicle can be computed from the measurements obtained by a sonar altimeter and the incremental motion computed from the homography.Unfortunately, as the mosaic increases in size, image local alignment errors increase the inaccuracies associated to the position of the vehicle. Occasionally, the trajectory described by the vehicle may cross over itself. In this situation new information is available, and the system can readjust the position estimates. Our proposal consists not only in localizing the vehicle, but also in readjusting the trajectory described by the vehicle when crossover information is obtained. This is achieved by implementing an Augmented State Kalman Filter (ASKF). Kalman filtering appears as an adequate framework to deal with position estimates and their associated covariances.Finally, some experimental results are shown. A laboratory setup has been used to analyze and evaluate the accuracy of the mosaicking system. This setup enables a quantitative measurement of the accumulated errors of the mosaics created in the lab. Then, the results obtained from real sea trials using the URIS underwater vehicle are shown.
|
4 |
Inferring 3D trajectory from monocular data using deep learning / Inferens av 3D bana utifrån 2D data med djupa arkitekturerSellstedt, Victor January 2021 (has links)
Trajectory estimation, with regards to reconstructing a 3D trajectory from a 2D trajectory, is commonly achieved using stereo or multi camera setups. Although projections from 3D to 2D suffer significant information loss, some methods approach this problem from a monocular perspective to address limitations of multi camera systems, such as requiring points in to be observed by more than one camera. This report explores how deep learning methodology can be applied to estimation of golf balls’ 3D trajectories using features from synthetically generated monocular data. Three neural network architectures for times series analysis, Long Short-Term Memory (LSTM), Bidirectional LSTM(BLSTM), and Temporal Convolutional Network (TCN); are compared to a simpler Multi Layer Perceptron (MLP) baseline and theoretical stereo error. The results show the models’ performances are varied with median performances often significantly better than average, caused by some predictions with very large errors. Overall the BLSTM performed best of all models both quantitatively and qualitatively, for some ranges with a lower error than a stereo estimate with an estimated disparity error of 1. Although the performance of the proposed monocular approaches do not outperform a stereo system with a lower disparity error, the proposed approaches could be good alternatives where stereo solutions might not be possible. / Lösningar för inferens av 3D banor utifrån 2D sekvenser använder sig ofta av två eller fler kameror som datakällor. Trots att mycket information förloras i projektionen till kamerabilden använder sig vissa lösningar sig av endast en kamera. En sådan monokulär lösning kan vara mer fördelaktiga än multikamera lösningar i vissa fall, såsom när ett objekt endast är synligt av ena kamera. Denna rapport undersöker hur metoder baserade på djupa arkitekturer kan användas för att uppskatta golfbollars 3D banor med variabler som skapas utifrån syntetiskt genererad monokulär data. Tre olika arkitekturer för tidsserieanalys Long Short-Term Memory (LSTM), Bidirectional LSTM (BLSTM) och Temporal Convolutional Neural Network (TCN) jämförs mot en enklare Multi Layer Perceptron (MLP) och teoretiska stereo-fel. Resultaten visar att modellerna har en varierad prestation med median resultaten ofta mycket bättre än medelvärdena, på grund av några förutsägelser med stora fel. Överlag var den bästa modellen BLSTM:en både kvantitativt och kvalitativt samt bättre än stereo lösningen med högre fel för vissa intervall. Resultaten visar dock på att modellerna är tydligt sämre en stereo systemet med lägre fel. Trots detta kan de föreslagna metoderna utgöra bra alternativ för lösningar där stereo system inte kan användas.
|
5 |
Optimization-Based Path Planning For Indoor UAVs in an Autonomous Exploration Framework / Optimeringsbaserad Vägplanering för Inomhus-UAV:er i ett Autonomt UtforskningsramverkCella, Marco January 2023 (has links)
Exploration is a fundamental problem in robotics that requires robots to navigate through unknown environments to autonomously gather information about their surroundings while executing collision-free paths. In this project, we propose a method for producing smooth paths during the exploration process in indoor environments using UAVs to improve battery efficiency and enhance the quality of pose estimation. The developed framework is built by merging two approaches that represent the state of the art in the field of autonomous exploration with UAVs. The overall exploration logic is given by GLocal, a paper that introduces a hybrid, i.e. both sampling-based and frontier-based, framework that is able to cope with the issue of odometry drift when exploring indoor environments due to the absence of absolute localization, e.g. through GNSS. The second approach is FUEL, which introduces a frontier-based exploration methodology which computes the ’drones path as an optimized non-uniform B-Spline. The framework described in this thesis borrows the optimized B-Spline trajectory generation from FUEL and implements it in GLocal. To do this, the original cost function defined by GLocal for each exploration viewpoint was modified and the resulting samples were used to select the initial control points of the B-Spline. Furthermore, we extended the underlying state machine governing the entire algorithm and we revisited the original re-planning logic. The presented system is evaluated in various simulated environments, showcasing the advantages and disadvantages of this method. These evaluations demonstrate its improved state estimation performance and absolute observed volume, albeit at the expense of longer traveled trajectories in big and complex environments. / Utforskning är ett grundläggande problem inom robotteknik som kräver att robotar navigerar genom okända miljöer för att autonomt samla in information om sin omgivning samtidigt som de utför kollisionsfria banor. I det här projektet föreslår vi en metod för att producera jämna banor under utforskningsprocessen i inomhusmiljöer med hjälp av UAV:er för att förbättra batterieffektiviteten och förbättra kvaliteten på posestimeringen. Det utvecklade ramverket bygger på en sammanslagning av två metoder som representerar den senaste tekniken inom autonom utforskning med UAV:er. Den övergripande utforskningslogiken ges av GLocal, en artikel som introducerar en hybrid, i.e. både samplingsbaserad och gränsbaserad, ram som kan hantera problemet med odometridrift vid utforskning av inomhusmiljöer på grund av frånvaron av absolut lokalisering, e.g. genom GNSS. Den andra metoden är FUEL, som introducerar en gränsbaserad utforskningsmetod som beräknar drönarens bana som en optimerad icke-uniform B-Spline. Ramverket som beskrivs i denna avhandling lånar den optimerade B-Spline-banegenereringen från FUEL och implementerar den i GLocal. För att göra detta modifierades den ursprungliga kostnadsfunktionen som definierades av GLocal för varje utforskningspunkt och de resulterande samplen användes för att välja de initiala kontrollpunkterna för B-Spline. Dessutom utökade vi den underliggande tillståndsmaskinen som styr hela algoritmen och vi reviderade den ursprungliga logiken för omplanering. Det presenterade systemet utvärderas i olika simulerade miljöer, vilket visar fördelarna och nackdelarna med denna metod. Dessa utvärderingar visar på förbättrad prestanda för tillståndsuppskattning och absolut observerad volym, om än på bekostnad av längre färdvägar i stora och komplexa miljöer.
|
Page generated in 0.1012 seconds