Spelling suggestions: "subject:"trajectory visualization"" "subject:"rajectory visualization""
1 |
Interactive Visual Analytics for Agent-Based simulation : Street-Crossing Behavior at Signalized Pedestrian CrossingZheng, Jiaqi January 2019 (has links)
To design a pedestrian crossing area reasonably can be a demanding task for traffic planners. There are several challenges, including determining the appropriate dimensions, and ensuring that pedestrians are exposed to the least risks. Pedestrian safety is especially obscure to analyze, given that many people in Stockholm cross the street illegally by running against the red light. To cope with these challenges, computational approaches of trajectory data visual analytics can be used to support the analytical reasoning process. However, it remains an unexplored field regarding how to visualize and communicate the street-crossing spatio-temporal data effectively. Moreover, the rendering also needs to deal with a growing data size for a more massive number of people. This thesis proposes a web-based interactive visual analytics tool for pedestrians' street-crossing behavior under various flow rates. The visualization methodology is also presented, which is then evaluated to have achieved satisfying communication and rendering effectiveness for maximal 180 agents over 100 seconds. In terms of the visualization scenario, pedestrians either wait for the red light or cross the street illegally; all people can choose to stop by a buffer island before they finish crossing. The visualization enables the analysis under multiple flow rates for 1) pedestrian movement, 2) space utilization, 3) crossing frequency in time-series, and 4) illegal frequency. Additionally, to acquire the initial trajectory data, Optimal Reciprocal Collision Avoidance (ORCA) algorithm is engaged in the crowd simulation. Then different visualization techniques are utilized to comply with user demands, including map animation, data aggregation, and time-series graph. / Att konstruera ett gångvägsområde kan rimligen vara en krävande uppgift för trafikplanerare. Det finns flera utmaningar, bland annat att bestämma lämpliga dimensioner och se till att fotgängare utsätts för minst risker. Fotgängarnas säkerhet är särskilt obskyrlig att analysera, eftersom många människor i Stockholm korsar gatan olagligt genom att springa mot det röda ljuset. För att klara av dessa utmaningar kan beräkningsmetoder för bana data visuell analys användas för att stödja den analytiska resonemangsprocessen. Det är emellertid ett oexplorerat fält om hur man visualiserar och kommunicerar gataövergången spatio-temporal data effektivt. Dessutom måste rendering också hantera en växande datastorlek för ett mer massivt antal människor. Denna avhandling föreslår ett webbaserat interaktivt visuellt analysverktyg för fotgängares gatöverföring under olika flödeshastigheter. Visualiseringsmetoden presenteras också, som sedan utvärderas för att ha uppnått tillfredsställande kommunikation och effektivitet för maximal 180 agenter över 100 sekunder. Vad beträffar visualiseringsscenariot, väntar fotgängare antingen på det röda ljuset eller tvärs över gatan; alla människor kan välja att stanna vid en buffertö innan de slutar korsa. Visualiseringen möjliggör analysen under flera flödeshastigheter för 1) fotgängarrörelse, 2) rymdutnyttjande, 3) korsfrekvens i tidsserier och 4) olaglig frekvens. För att förvärva den ursprungliga bana-data är Optimal Reciprocal Collision Avoidance (ORCA) algoritmen förknippad med folkmassimuleringen. Därefter utnyttjas olika visualiseringstekniker för att uppfylla användarnas krav, inklusive kartanimering, dataaggregering och tidsserier.
|
2 |
Effects of Virtual Reality and Trajectory Visualization on Neurosurgical Training / Effekten av Virtuell Verklighet och Banvisualisering på Neurokirurgisk TräningWippich, Max January 2023 (has links)
With its increasing potential, Virtual Reality (VR) technology has found a growing presence in medical education. In the domain of neurosurgical training, VR has been thoroughly investigated, but gaps still persist, such as in the field of Minimally Invasive Surgery (MIS) and assistive visualizations. Thus, this thesis project aims at combining visualizations of motion captured surgical simulation data with a VR environment for training in the minimally invasive procedure of External Ventricular Drain (EVD) placement. A user study was conducted with the goal of investigating effectiveness (in terms of speed, confidence, and accuracy) when identifying certain features of the trajectory of a catheter simulating an EVD placement. The conditions compared were two visualization techniques, 4D-time density and trail, as well as a VR and desktop environment. The study employed a betweensubjects design when comparing visualizations and a within-subjects design when comparing environments. Results from 20 participants indicate a higher speed for the 4D-time density visualization compared to the trail visualization and no visualization in the VR environment. Participants also found the 4D-time density visualization significantly more helpful in VR compared to desktop, when identifying one of the features. The VR environment also had a significant positive impact on speed as well as confidence for certain combinations of the conditions, compared to the desktop environment. Further, participants tended to prefer the VR environment and found tasks easier in this environment. In conclusion, the 4D-time density visualization and VR environment have the potential to improve efficiency when interpreting and understanding the trajectory of a catheter during EVD placement. / Med ökande potential har Virtuell Verklighet-teknik (VR) funnit en växande närvaro inom medicinsk utbildning. Specifikt inom neurokirurgisk utbildning har VR undersökts grundligt, men hål i forskningen kvarstår, exempelvis inom området för minimalinvasiv kirurgi (MIS) och assisterande visualiseringar. Detta examensarbete syftar därför att kombinera visualiseringar av kirurgisk simuleringsdata, inspelad med hjälp av motion capture-teknik, med en VRmiljö för träning i den minimalinvasiva proceduren placering av Externt Ventrikulär Dränage (EVD). En användarstudie genomfördes med målet att undersöka effektivitet (i termer av hastighet, självförtroende och exakthet) vid identifiering av vissa kännetecken hos en kateters bana som simulerar en EVDplacering. Villkoren som jämfördes var två visualiseringstekniker, 4D-time Density och trail, samt de två miljöerna VR och desktop. I studien användes en testdesign där visualiseringarna jämfördes mellan två testgrupper och miljöerna jämfördes inom testgruppen. Resultat från 20 deltagare indikerar en högre hastighet för 4D-time-density visualiseringen jämfört med trail visualiseringen och ingen visualisering i VR-miljön. Deltagarna uppfattade också 4D-time-density visualiseringen som betydligt mer hjälpsam i VR jämfört med desktop, när de identifierade en av kännetecknen. Ytterligare hade VR-miljön en signifikant positiv inverkan på deltagarnas hastighet samt självförtroende för vissa kombinationer av villkor, jämfört med desktopmiljön. Deltagarna tenderade också att föredra VR-miljön och uppfattade uppgifterna som lättare i denna miljö. Sammanfattningsvis har 4D-time density visualiseringen och VR-miljön potential att förbättra effektiviteten när man tolkar och bildar en uppfattning om en kateters bana under EVDplacering.
|
3 |
Focus and Context Methods for Particle-Based DataStaib, Joachim 18 February 2019 (has links)
Particle-based models play a central role in many simulation techniques used for example in thermodynamics, molecular biology, material sciences, or astrophysics. Such simulations are carried out by directly calculating interactions on a set of individual particles over many time steps. Clusters of particles form higher-order structures like drops or waves.
The interactive visual inspection of particle datasets allows gaining in-depth insight, especially for initial exploration tasks. However, their visualization is challenging in many ways. Visualizations are required to convey structures and dynamics on multiple levels, such as per-particle or per-structure. Structures are typically dense and highly dynamic over time and are thus likely subject to heavy occlusion. Furthermore, since simulation systems become increasingly powerful, the number of particles per time step increases steadily, reaching data set sizes of trillions of particles. This enormous amount of data is challenging not only from a computational perspective but also concerning comprehensibility.
In this work, the idea of Focus+Context is applied to particle visualizations. Focus+Context is based on presenting a selection of the data – the focus – in high detail, while the remaining data – the context – is shown in reduced detail within the same image. This enables efficient and scalable visualizations that retain as much relevant information as possible while still being comprehensible for a human researcher. Based on the formulation of the most critical challenges, various novel methods for the visualization of static and dynamic 3D and nD particle data are introduced. A new approach that builds on global illumination and extended transparency allows to visualize otherwise occluded structures and
steer visual saliency towards selected elements. To address the time-dependent nature of particle data, Focus+Context is then extended to time. By using an illustration-inspired visualization, the researcher is supported in assessing the dynamics of higher-order particle structures. To understand correlations and high dimensional structures in higher dimensional data, a new method is presented, based on the idea of depth of field.
|
Page generated in 0.0989 seconds