Spelling suggestions: "subject:"transferències dde baixa energia"" "subject:"transferències dee baixa energia""
1 |
The Role and Usage of Libration Point Orbits in the Earth - Moon SystemAlessi, Elisa Maria 04 October 2010 (has links)
In this dissertation, we show the effectiveness of the exploitation of the Circular Restricted Three - Body Problem (CR3BP) in the Earth - Moon framework. We study the motion of a massless particle under the gravitational attraction of Earth and Moon, either to design missions in the new era of lunar exploration and simulate the behaviour of minor bodies that get close to the Earth.A fundamental role is played by the five equilibrium, or libration, points that appear in the rotating reference system. We focus on two, L(1) and L(2), unstable collinear libration points, taking advantage of the central and hyperbolic invariant manifolds, which exist in their neighborhood. Various types of periodic and quasi-periodic orbits, to be conceived as station locations for a spacecraft, occupy the central manifold. A stable and an unstable invariant manifold are associated with any of these orbits: they serve as channels to get far or close to the central orbits for t > / = 0. We exploit the corresponding dynamics to construct transfers from either Earth and Moon to a libration point orbit (LPO) and to investigate some paths that might guide asteroids impacting onto the Moon.We are witnesses of a recent enthusiasm on a possible return to the Moon. Several space agencies have designed unmanned missions that have just achieved observations around the Moon, in view of a future human installation. Besides, the space tourism companies are planning to extend their potentiality by offering lunar trips. In this context, the neighborhood of L(1) seems to be an appropriate place to put a space hub. Instead, L(2) would be profitable to monitor the lunar farside.In Chapter 1, we explain the CR3BP and how to compute, with different methodologies, central orbits along with their associated hyperbolic manifolds and the transit trajectories lying inside them. Then, two more elaborate dynamical systems are introduced, the Bicircular Restricted Four - Body Problem and the Restricted n - Body Problem.In Chapter 2, we use the stable and the unstable manifolds associated with L1/L2 central orbits to connect the lunar surface with such LPOs. We see that almost no effort should be put to follow these transfers thanks tothe natural dynamics we consider.In Chapter 3, we study how to depart from a nominal orbit around the Earth and arrive to a L1/L2 LPO. This case requires two maneuvers, one to leave the Low Earth Orbit and another to insert into the stable manifold associated with the given LPO.In Chapter 4, we wonder how the above reference solutions can change whenever different forces are added to the dynamical model. We describe two possible approaches that can be implemented, namely an optimal control strategy and a multiple shooting procedure. The results demonstrate that also in the Earth - Moon framework the CR3BP gives solutions close to the ones to be used in reality.In Chapter 5, we cope with the collision of asteroids onto the Moon. Such phenomenon happens continuously on all the rocky bodies populating the Solar System, as it can be inferred from the craters that mould their surface, and it is widely studied by several branches of science, since it provides information on the target and on the impactors in dynamical, astronomical and geological terms.We analyze the role played, in the creation of lunar impact craters, by low-energy transit trajectories which approach the neighborhood of L(2). It turns out that in the most likely case the collisions are focused on the apex of the Moon. Summing up the gravitational force exerted by the Sun, we notice that the relative Earth-Moon-Sun configuration can change dramatically the percentage and the region of impact.KEYWORDS: Circular Restricted Three-Body Problem, Lunar Impact Dynamics, Low-Energy Transfers, Optimal Control / L'objectiu d'aquest treball és mostrar la utilitat de l'explotació del Problema Circular Restringit dels Tres Cossos (CR3BP) pel sistema Terra - Lluna. Aquest sistema dinàmic considera el moviment d'una partícula amb massa negligible sota l'atracció gravitatòria de Terra i Lluna i pot ser usat pel disseny de missions espacials a la nova era d'exploració lunar, així com per simular el comportament d'asteroides i cometes que s'apropen a la Terra.Els cinc punts d'equilibri, o de libració, del CR3BP que apareixen al sistema de referència giratori, juguen un paper fonamental: ens centrarem en dos punts de libració col·lineals inestables, L(1) i L(2).Convé tenir en compte les varietats invariants centrals i hiperbòliques que hi ha a l'entorn de L(1) i L(2). La varietat central està ocupada per diversos tipus d'òrbites periòdiques i quasi-periòdiques, que poden ser concebudes com a solucions d'estacionament per a un vehicle espacial. Qualsevol d'aquestes òrbites té associada una varietat estable i una d'inestable, que serveixen com a canals per arribar lluny o prop de les òrbites centrals per t >/= 0.Farem ús de la dinàmica associada a aquestes varietats per a la construcció de transferències des de la Terra i la Lluna a una òrbita de libració i per investigar alguns camins que podrien guiar asteroides que impacten amb la Lluna.Pel que fa a la primera qüestió, l'entorn de L(1) sembla ser el lloc més apropiat per posar una estació espacial. D'altra banda, L(2) seria útil per observar i/o controlar la cara oculta de la Lluna.A la segona part de la tesi, investiguem la col·lisió d'asteroides amb la Lluna. Aquest fenòmen té lloc contínuament a tots els cossos rocosos del Sistema Solar, com es pot deduir dels cràters que modelen les seves superfícies. El procés de formació de cràters proporciona informació sobre el cos objectiu i sobre els asteroides,en termes dinàmics, astronòmics i geològics. Nosaltres estem interessats en el desenvolupament d'una metodologia diferent que pot ajudar en aquesta recerca.En la obra, explotem les eines de Teoria de Sistemes Dinàmics i estratègies de control òptim.
|
Page generated in 0.077 seconds