• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 229
  • 10
  • 10
  • 9
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 309
  • 309
  • 139
  • 117
  • 111
  • 93
  • 71
  • 62
  • 60
  • 56
  • 55
  • 53
  • 50
  • 49
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Using Machine Learning Techniques to Improve Static Code Analysis Tools Usefulness

Alikhashashneh, Enas A. 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This dissertation proposes an approach to reduce the cost of manual inspections for as large a number of false positive warnings that are being reported by Static Code Analysis (SCA) tools as much as possible using Machine Learning (ML) techniques. The proposed approach neither assume to use the particular SCA tools nor depends on the specific programming language used to write the target source code or the application. To reduce the number of false positive warnings we first evaluated a number of SCA tools in terms of software engineering metrics using a highlighted synthetic source code named the Juliet test suite. From this evaluation, we concluded that the SCA tools report plenty of false positive warnings that need a manual inspection. Then we generated a number of datasets from the source code that forced the SCA tool to generate either true positive, false positive, or false negative warnings. The datasets, then, were used to train four of ML classifiers in order to classify the collected warnings from the synthetic source code. From the experimental results of the ML classifiers, we observed that the classifier that built using the Random Forests (RF) technique outperformed the rest of the classifiers. Lastly, using this classifier and an instance-based transfer learning technique, we ranked a number of warnings that were aggregated from various open-source software projects. The experimental results show that the proposed approach to reduce the cost of the manual inspection of the false positive warnings outperformed the random ranking algorithm and was highly correlated with the ranked list that the optimal ranking algorithm generated.
82

Community Recommendation in Social Networks with Sparse Data

Rahmaniazad, Emad 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Recommender systems are widely used in many domains. In this work, the importance of a recommender system in an online learning platform is discussed. After explaining the concept of adding an intelligent agent to online education systems, some features of the Course Networking (CN) website are demonstrated. Finally, the relation between CN, the intelligent agent (Rumi), and the recommender system is presented. Along with the argument of three different approaches for building a community recommendation system. The result shows that the Neighboring Collaborative Filtering (NCF) outperforms both the transfer learning method and the Continuous bag-of-words approach. The NCF algorithm has a general format with two various implementations that can be used for other recommendations, such as course, skill, major, and book recommendations.
83

Acoustic-articulatory DNN Model based on Transfer Learning for Pronunciation Error Detection and Diagnosis / 発音誤りの検出と診断のための転移学習に基づく音響・調音DNNモデル / # ja-Kana

Duan, Richeng 25 September 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第21391号 / 情博第677号 / 新制||情||117(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 河原 達也, 教授 黒橋 禎夫, 教授 壇辻 正剛, 准教授 南條 浩輝 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
84

3D Object Representation and Recognition Based on Biologically Inspired Combined Use of Visual and Tactile Data

Rouhafzay, Ghazal 13 May 2021 (has links)
Recent research makes use of biologically inspired computation and artificial intelligence as efficient means to solve real-world problems. Humans show a significant performance in extracting and interpreting visual information. In the cases where visual data is not available, or, for example, if it fails to provide comprehensive information due to occlusions, tactile exploration assists in the interpretation and better understanding of the environment. This cooperation between human senses can serve as an inspiration to embed a higher level of intelligence in computational models. In the context of this research, in the first step, computational models of visual attention are explored to determine salient regions on the surface of objects. Two different approaches are proposed. The first approach takes advantage of a series of contributing features in guiding human visual attention, namely color, contrast, curvature, edge, entropy, intensity, orientation, and symmetry are efficiently integrated to identify salient features on the surface of 3D objects. This model of visual attention also learns to adaptively weight each feature based on ground-truth data to ensure a better compatibility with human visual exploration capabilities. The second approach uses a deep Convolutional Neural Network (CNN) for feature extraction from images collected from 3D objects and formulates saliency as a fusion map of regions where the CNN looks at, while classifying the object based on their geometrical and semantic characteristics. The main difference between the outcomes of the two algorithms is that the first approach results in saliencies spread over the surface of the objects while the second approach highlights one or two regions with concentrated saliency. Therefore, the first approach is an appropriate simulation of visual exploration of objects, while the second approach successfully simulates the eye fixation locations on objects. In the second step, the first computational model of visual attention is used to determine scattered salient points on the surface of objects based on which simplified versions of 3D object models preserving the important visual characteristics of objects are constructed. Subsequently, the thesis focuses on the topic of tactile object recognition, leveraging the proposed model of visual attention. Beyond the sensor technologies which are instrumental in ensuring data quality, biological models can also assist in guiding the placement of sensors and support various selective data sampling strategies that allow exploring an object’s surface faster. Therefore, the possibility to guide the acquisition of tactile data based on the identified visually salient features is tested and validated in this research. Different object exploration and data processing approaches were used to identify the most promising solution. Our experiments confirm the effectiveness of computational models of visual attention as a guide for data selection for both simplifying 3D representation of objects as well as enhancing tactile object recognition. In particular, the current research demonstrates that: (1) the simplified representation of objects by preserving visually salient characteristics shows a better compatibility with human visual capabilities compared to uniformly simplified models, and (2) tactile data acquired based on salient visual features are more informative about the objects’ characteristics and can be employed in tactile object manipulation and recognition scenarios. In the last section, the thesis addresses the issue of transfer of learning from vision to touch. Inspired from biological studies that attest similarities between the processing of visual and tactile stimuli in human brain, the thesis studies the possibility of transfer of learning from vision to touch using deep learning architectures and proposes a hybrid CNN that handles both visual and tactile object recognition.
85

A Systematic Methodology for Developing Robust Prognostic Models Suitable for Large-Scale Deployment

Li, Pin 15 October 2020 (has links)
No description available.
86

A Transfer Learning Methodology of Domain Generalization for Prognostics and Health Management

Yang, Qibo January 2020 (has links)
No description available.
87

Identifying Shooting Tweets with Deep Learning and Keywords Filtering: Comparative Study

Abdelhalim Mohamed, Ammar Ahmed 11 June 2021 (has links)
No description available.
88

Towards Robust Side Channel Attacks with Machine Learning

Wang, Chenggang 06 June 2023 (has links)
No description available.
89

Camera Based Deep Learning Algorithms with Transfer Learning in Object Perception

Hu, Yujie January 2021 (has links)
The perception system is the key for autonomous vehicles to sense and understand the surrounding environment. As the cheapest and most mature sensor, monocular cameras create a rich and accurate visual representation of the world. The objective of this thesis is to investigate if camera-based deep learning models with transfer learning technique can achieve 2D object detection, License Plate Detection and Recognition (LPDR), and highway lane detection in real time. The You Only Look Once version 3 (YOLOv3) algorithm with and without transfer learning is applied on the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) dataset for cars, cyclists, and pedestrians detection. This application shows that objects could be detected in real time and the transfer learning boosts the detection performance. The Convolutional Recurrent Neural Network (CRNN) algorithm with a pre-trained model is applied on multiple License Plate (LP) datasets for real-time LP recognition. The optimized model is then used to recognize Ontario LPs and achieves high accuracy. The Efficient Residual Factorized ConvNet (ERFNet) algorithm with transfer learning and a cubic spline model are modified and implemented on the TuSimple dataset for lane segmentation and interpolation. The detection performance and speed are comparable with other state-of-the-art algorithms. / Thesis / Master of Applied Science (MASc)
90

Transfer Learning for Image Processing Applications

Jansson, Christoffer, Jansson, Johanna January 2023 (has links)
Att träna neurala nätverk tar mycket tid och kan kräva extrema mängder data. Både träningstiden och mängden data som behövs kan minskas med transfer learning. I detta examensarbete studeras effekterna av transfer learning när ett neurala nätverk tränas på en liten datamängd. VGG16, MobileNeV3 och SqeezeNet används som förtränade modeller. Modellerna modifierades för att passa den nya datasetet. Ytterligare modifieringar gjordes för att testa om det kunde förbättra generaliseringen och minska träningstiden. Experimenten visade att transfer learning kan minska träningstiden och resulterade i modeller med bättre generalisering än slumpmässigt initialiserade modeller. Experimenten visade också att en modifierad version av SqeezeNet är den mest framgångsrika modellen. / Training neural networks takes a lot of time and can require extreme amounts of data. Both training time and the amount of data needed can be reduced with transfer learning. In this thesis the effects of transfer learning are studied when training a neural network on a small dataset. VGG16, MobileNeV3 and SqeezeNet are used as pre-trained models. The models were modified to fit the new dataset. Further modifications were made to test whether it could improve the generalization and reduced training time. The experiments showed that transfer learning can lead to shorter training time and resulted in models with better generalization than random initialized models. The experiments also showed that a modified version of SqeezeNet is the most successful model.

Page generated in 0.0846 seconds