• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 228
  • 10
  • 10
  • 9
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 308
  • 308
  • 139
  • 117
  • 111
  • 93
  • 71
  • 61
  • 60
  • 56
  • 55
  • 53
  • 50
  • 49
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Transfer learning with Gaussian processes

Skolidis, Grigorios January 2012 (has links)
Transfer Learning is an emerging framework for learning from data that aims at intelligently transferring information between tasks. This is achieved by developing algorithms that can perform multiple tasks simultaneously, as well as translating previously acquired knowledge to novel learning problems. In this thesis, we investigate the application of Gaussian Processes to various forms of transfer learning with a focus on classification problems. This process initiates with a thorough introduction to the framework of Transfer learning, providing a clear taxonomy of the areas of research. Following that, we continue by reviewing the recent advances on Multi-task learning for regression with Gaussian processes, and compare the performance of some of these methods on a real data set. This review gives insights about the strengths and weaknesses of each method, which acts as a point of reference to apply these methods to other forms of transfer learning. The main contributions of this thesis are reported in the three following chapters. The third chapter investigates the application of Multi-task Gaussian processes to classification problems. We extend a previously proposed model to the classification scenario, providing three inference methods due to the non-Gaussian likelihood the classification paradigm imposes. The forth chapter extends the multi-task scenario to the semi-supervised case. Using labeled and unlabeled data, we construct a novel covariance function that is able to capture the geometry of the distribution of each task. This setup allows unlabeled data to be utilised to infer the level of correlation between the tasks. Moreover, we also discuss the potential use of this model to situations where no labeled data are available for certain tasks. The fifth chapter investigates a novel form of transfer learning called meta-generalising. The question at hand is if, after training on a sufficient number of tasks, it is possible to make predictions on a novel task. In this situation, the predictor is embedded in an environment of multiple tasks but has no information about the origins of the test task. This elevates the concept of generalising from the level of data to the level of tasks. We employ a model based on a hierarchy of Gaussian processes, in a mixtures of expert sense, to make predictions based on the relation between the distributions of the novel and the training tasks. Each chapter is accompanied with a thorough experimental part giving insights about the potentials and the limits of the proposed methods.
42

Bayesian Models for Multilingual Word Alignment

Östling, Robert January 2015 (has links)
In this thesis I explore Bayesian models for word alignment, how they can be improved through joint annotation transfer, and how they can be extended to parallel texts in more than two languages. In addition to these general methodological developments, I apply the algorithms to problems from sign language research and linguistic typology. In the first part of the thesis, I show how Bayesian alignment models estimated with Gibbs sampling are more accurate than previous methods for a range of different languages, particularly for languages with few digital resources available—which is unfortunately the state of the vast majority of languages today. Furthermore, I explore how different variations to the models and learning algorithms affect alignment accuracy. Then, I show how part-of-speech annotation transfer can be performed jointly with word alignment to improve word alignment accuracy. I apply these models to help annotate the Swedish Sign Language Corpus (SSLC) with part-of-speech tags, and to investigate patterns of polysemy across the languages of the world. Finally, I present a model for multilingual word alignment which learns an intermediate representation of the text. This model is then used with a massively parallel corpus containing translations of the New Testament, to explore word order features in 1001 languages.
43

DEFT guessing: using inductive transfer to improve rule evaluation from limited data

Reid, Mark Darren, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Algorithms that learn sets of rules describing a concept from its examples have been widely studied in machine learning and have been applied to problems in medicine, molecular biology, planning and linguistics. Many of these algorithms used a separate-and-conquer strategy, repeatedly searching for rules that explain different parts of the example set. When examples are scarce, however, it is difficult for these algorithms to evaluate the relative quality of two or more rules which fit the examples equally well. This dissertation proposes, implements and examines a general technique for modifying rule evaluation in order to improve learning performance in these situations. This approach, called Description-based Evaluation Function Transfer (DEFT), adjusts the way rules are evaluated on a target concept by taking into account the performance of similar rules on a related support task that is supplied by a domain expert. Central to this approach is a novel theory of task similarity that is defined in terms of syntactic properties of rules, called descriptions, which define what it means for rules to be similar. Each description is associated with a prior distribution over classification probabilities derived from the support examples and a rule's evaluation on a target task is combined with the relevant prior using Bayes' rule. Given some natural conditions regarding the similarity of the target and support task, it is shown that modifying rule evaluation in this way is guaranteed to improve estimates of the true classification probabilities. Algorithms to efficiently implement Deft are described, analysed and used to measure the effect these improvements have on the quality of induced theories. Empirical studies of this implementation were carried out on two artificial and two real-world domains. The results show that the inductive transfer of evaluation bias based on rule similarity is an effective and practical way to improve learning when training examples are limited.
44

Mathematical Theories of Interaction with Oracles

Yang, Liu 01 October 2013 (has links)
No description available.
45

A Study of Boosting based Transfer Learning for Activity and Gesture Recognition

January 2011 (has links)
abstract: Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs and without the need for explicit relearning from scratch. In this thesis, a novel instance transfer technique that adapts a "Cost-sensitive" variation of AdaBoost is presented. The method capitalizes on the theoretical and functional properties of AdaBoost to selectively reuse outdated training instances obtained from a "source" domain to effectively classify unseen instances occurring in a different, but related "target" domain. The algorithm is evaluated on real-world classification problems namely accelerometer based 3D gesture recognition, smart home activity recognition and text categorization. The performance on these datasets is analyzed and evaluated against popular boosting-based instance transfer techniques. In addition, supporting empirical studies, that investigate some of the less explored bottlenecks of boosting based instance transfer methods, are presented, to understand the suitability and effectiveness of this form of knowledge transfer. / Dissertation/Thesis / M.S. Computer Science 2011
46

Domain similarity metrics for predicting transfer learning performance

Bäck, Jesper January 2019 (has links)
The lack of training data is a common problem in machine learning. One solution to thisproblem is to use transfer learning to remove or reduce the requirement of training data.Selecting datasets for transfer learning can be difficult however. As a possible solution, thisstudy proposes the domain similarity metrics document vector distance (DVD) and termfrequency-inverse document frequency (TF-IDF) distance. DVD and TF-IDF could aid inselecting datasets for good transfer learning when there is no data from the target domain.The simple metric, shared vocabulary, is used as a baseline to check whether DVD or TF-IDF can indicate a better choice for a fine-tuning dataset. SQuAD is a popular questionanswering dataset which has been proven useful for pre-training models for transfer learn-ing. The results were therefore measured by pre-training a model on the SQuAD datasetand fine-tuning on a selection of different datasets. The proposed metrics were used tomeasure the similarity between the datasets to see whether there was a correlation betweentransfer learning effect and similarity. The results found a clear relation between a smalldistance according to the DVD metric and good transfer learning. This could prove usefulfor a target domain without training data, a model could be trained on a big dataset andfine-tuned on a small dataset that is very similar to the target domain. It was also foundthat even small amount of training data from the target domain can be used to fine-tune amodel pre-trained on another domain of data, achieving better performance compared toonly training on data from the target domain.
47

Deep learning for medical report texts

Nelsson, Mikael January 2018 (has links)
Data within the medical sector is often stored as free text entries. This is especially true for report texts, which are written after an examination. To be able to automatically gather data from these texts they need to be analyzed and classified to show what findings the examinations had. This thesis compares three state of the art deep learning approaches to classify short medical report texts. This is done for two types of examinations, so the concept of transfer learning plays a role in the evaluation. An optimal model should learn concepts that are applicable for more than one type of examinations, since we can expect the texts to be similar. The two data set from the examinations are also of different sizes, and both have an uneven distribution among the target classes. One of the models is based on techniques traditionally used for language processing using deep learning. The two other models are based on techniques usually used for image recognition and classification. The latter models proves to be the best across the different metrics, not least in the sense of transfer learning as they improve the results when learning from both types of examinations. This becomes especially apparent for the lowest frequent class from the smaller data set as none of the models correctly predict this class without using transfer learning.
48

Transfer Learning for BioImaging and Bilingual Applications

January 2015 (has links)
abstract: Discriminative learning when training and test data belong to different distributions is a challenging and complex task. Often times we have very few or no labeled data from the test or target distribution, but we may have plenty of labeled data from one or multiple related sources with different distributions. Due to its capability of migrating knowledge from related domains, transfer learning has shown to be effective for cross-domain learning problems. In this dissertation, I carry out research along this direction with a particular focus on designing efficient and effective algorithms for BioImaging and Bilingual applications. Specifically, I propose deep transfer learning algorithms which combine transfer learning and deep learning to improve image annotation performance. Firstly, I propose to generate the deep features for the Drosophila embryo images via pretrained deep models and build linear classifiers on top of the deep features. Secondly, I propose to fine-tune the pretrained model with a small amount of labeled images. The time complexity and performance of deep transfer learning methodologies are investigated. Promising results have demonstrated the knowledge transfer ability of proposed deep transfer algorithms. Moreover, I propose a novel Robust Principal Component Analysis (RPCA) approach to process the noisy images in advance. In addition, I also present a two-stage re-weighting framework for general domain adaptation problems. The distribution of source domain is mapped towards the target domain in the first stage, and an adaptive learning model is proposed in the second stage to incorporate label information from the target domain if it is available. Then the proposed model is applied to tackle cross lingual spam detection problem at LinkedIn’s website. Our experimental results on real data demonstrate the efficiency and effectiveness of the proposed algorithms. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2015
49

A probabilistic framework of transfer learning- theory and application

January 2015 (has links)
abstract: Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in order to develop a model for the target domain that is better than a model using the data of the target domain alone. Transfer learning emerged because classic machine learning, when used to model different domains, has to take on one of two mechanical approaches. That is, it will either assume the data distributions of the different domains to be the same and thereby developing one model that fits all, or develop one model for each domain independently. Transfer learning, on the other hand, aims to mitigate the limitations of the two approaches by accounting for both the similarity and specificity of related domains. The objective of my dissertation research is to develop new transfer learning methods and demonstrate the utility of the methods in real-world applications. Specifically, in my methodological development, I focus on two different transfer learning scenarios: spatial transfer learning across different domains and temporal transfer learning along time in the same domain. Furthermore, I apply the proposed spatial transfer learning approach to modeling of degenerate biological systems.Degeneracy is a well-known characteristic, widely-existing in many biological systems, and contributes to the heterogeneity, complexity, and robustness of biological systems. In particular, I study the application of one degenerate biological system which is to use transcription factor (TF) binding sites to predict gene expression across multiple cell lines. Also, I apply the proposed temporal transfer learning approach to change detection of dynamic network data. Change detection is a classic research area in Statistical Process Control (SPC), but change detection in network data has been limited studied. I integrate the temporal transfer learning method called the Network State Space Model (NSSM) and SPC and formulate the problem of change detection from dynamic networks into a covariance monitoring problem. I demonstrate the performance of the NSSM in change detection of dynamic social networks. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2015
50

Domain Adaptive Computational Models for Computer Vision

January 2017 (has links)
abstract: The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source domain is transferred to a target domain in the form of learned models and efficient feature representations. The dissertation outlines novel domain adaptation approaches across different feature spaces; (i) a linear Support Vector Machine model for domain alignment; (ii) a nonlinear kernel based approach that embeds domain-aligned data for enhanced classification; (iii) a hierarchical model implemented using deep learning, that estimates domain-aligned hash values for the source and target data, and (iv) a proposal for a feature selection technique to reduce cross-domain disparity. These adaptation procedures are tested and validated across a range of computer vision applications like object classification, facial expression recognition, digit recognition, and activity recognition. The dissertation also provides a unique perspective of domain adaptation literature from the point-of-view of linear, nonlinear and hierarchical feature spaces. The dissertation concludes with a discussion on the future directions for research that highlight the role of domain adaptation in an era of rapid advancements in artificial intelligence. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2017

Page generated in 0.1009 seconds