• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ACCURATE DETECTION OF SELECTIVE SWEEPS WITH TRANSFER LEARNING

Unknown Date (has links)
Positive natural selection leaves detectable, distinctive patterns in the genome in the form of a selective sweep. Identifying areas of the genome that have undergone selective sweeps is an area of high interest as it enables understanding of species and population evolution. Previous work has accomplished this by evaluating patterns within summary statistics computed across the genome and through application of machine learning techniques to raw population genomic data. When using raw population genomic data, convolutional neural networks have most recently been employed as they can handle large input arrays and maintain correlations among elements. Yet, such models often require massive amounts of training data and can be computationally expensive to train for a given problem. Instead, transfer learning has recently been used in the image analysis literature to improve machine learning models by learning the important features of images from large unrelated datasets beforehand, and then refining these models through subsequent application on smaller and more relevant datasets. We combine transfer learning with convolutional neural networks to improve classification of selective sweeps from raw population genomic data. We show that the combination of transfer learning with convolutional neural networks allows for accurate classification of selective sweeps. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2021. / FAU Electronic Theses and Dissertations Collection
2

On Some Problems In Transfer Learning

Galbraith, Nicholas R. January 2024 (has links)
This thesis consists of studies of two important problems in transfer learning: binary classification under covariate-shift transfer, and off-policy evaluation in reinforcement learning. First, the problem of binary classification under covariate shift is considered, for which the first efficient procedure for optimal pruning of a dyadic classification tree is presented, where optimality is derived with respect to a notion of 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒅𝒊𝒔𝒄𝒓𝒆𝒑𝒂𝒏𝒄𝒚 between the shifted marginal distributions of source and target. Further, it is demonstrated that the procedure is adaptive to the discrepancy between marginal distributions in a neighbourhood of the decision boundary. It is shown how this notion of average discrepancy can be viewed as a measure of 𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏 between distributions, as it relates to existing notions of information such as the Minkowski and Renyi dimensions. Experiments are carried out on real data to verify the efficacy of the pruning procedure as compared to other baseline methods for pruning under transfer. The problem of off-policy evaluation for reinforcement learning is then considered, where two minimax lower bounds for the mean-square error of off-policy evaluation under Markov decision processes are derived. The first of these gives a non-asymptotic lower bound for OPE in finite state and action spaces over a model in which the mean reward is perturbed arbitrarily (up to a given magnitude) that depends on an average weighted chi-square divergence between the behaviour and target policies. The second provides an asymptotic lower bound for OPE in continuous state-space when the mean reward and policy ratio functions lie in a certain smoothness class. Finally, the results of a study that purported to have derived a policy for sepsis treatment in ICUs are replicated and shown to suffer from excessive variance and therefore to be unreliable; our lower bound is computed and used as evidence that reliable off-policy estimation from this data would have required a great deal more samples than were available.
3

Verbesserung von maschinellen Lernmodellen durch Transferlernen zur Zeitreihenprognose im Radial-Axial Ringwalzen

Seitz, Johannes, Wang, Qinwen, Moser, Tobias, Brosius, Alexander, Kuhlenkötter, Bernd 28 November 2023 (has links)
Anwendung von maschinellen Lernverfahren (ML) in der Produktionstechnik, in Zeiten der Industrie 4.0, stark angestiegen. Insbesondere die Datenverfügbarkeit ist an dieser Stelle elementar und für die erfolgreiche Umsetzung einer ML-Applikation Voraussetzung. Falls für eine gegebene Problemstellung die Datenmenge oder -qualität nicht ausreichend ist, können Techniken, wie die Datenaugmentierung, der Einsatz von synthetischen Daten sowie das Transferlernen von ähnlichen Datensätzen Abhilfe schaffen. Innerhalb dieser Ausarbeitung wird das Konzept des Transferlernens im Bereich das Radial-Axial Ringwalzens (RAW) angewendet und am Beispiel der Zeitreihenprognose des Außendurchmessers über die Prozesszeit durchgeführt. Das Radial-Axial Ringwalzen ist ein warmumformendes Verfahren und dient der nahtlosen Ringherstellung.
4

Improvement of Machine Learning Models for Time Series Forecasting in Radial-Axial Ring Rolling through Transfer Learning

Seitz, Johannes, Wang, Qinwen, Moser, Tobias, Brosius, Alexander, Kuhlenkötter, Bernd 28 November 2023 (has links)
Due to the increasing computing power and corresponding algorithms, the use of machine learning (ML) in production technology has risen sharply in the age of Industry 4.0. Data availability in particular is fundamental at this point and a prerequisite for the successful implementation of a ML application. If the quantity or quality of data is insufficient for a given problem, techniques such as data augmentation, the use of synthetic data and transfer learning of similar data sets can provide a remedy. In this paper, the concept of transfer learning is applied in the field of radial-axial ring rolling (rarr) and implemented using the example of time series prediction of the outer diameter over the process time. Radial-axial ring rolling is a hot forming process and is used for seamless ring production.
5

Novel Damage Assessment Framework for Dynamic Systems through Transfer Learning from Audio Domains

Tronci, Eleonora Maria January 2022 (has links)
Nowadays, damage detection strategies built on the application of Artificial Neural Network tools to define models that mimic the dynamic behavior of structural systems are viral. However, a fundamental issue in developing these strategies for damage assessment is given by the unbalanced nature of the available databases for civil, mechanical, or aerospace applications, which commonly do not contain sufficient information from all the different classes that need to be identified. Unfortunately, when the aim is to classify between the healthy and damaged conditions in a structure or a generic dynamic system, it is extremely rare to have sufficient data for the unhealthy state since the system has already failed. At the same time, it is common to have plenty of data coming from the system under operational conditions. Consequently, the learning task, carried on with deep learning approaches, becomes case-dependent and tends to be specialized for a particular case and a very limited number of damage scenarios. This doctoral research presents a framework for damage classification in dynamic systems intended to overcome the limitations imposed by unbalanced datasets. In this methodology, the model's classification ability is enriched by using lower-level features derived through an improved extraction strategy that learns from a rich audio dataset how to characterize vibration traits starting from human voice recordings. This knowledge is then transferred to a target domain with much less data points, such as a structural system where the same discrimination approach is employed to classify and differentiate different health conditions. The goal is to enrich the model's ability to discriminate between classes on the audio records, presenting multiple different categories with more information to learn. The proposed methodology is validated both numerically and experimentally.

Page generated in 0.1286 seconds