• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tree crown structural characterization : a study using terrestrial laser scanning and 3D radiative transfer modeling /

Moorthy, Inian. January 2009 (has links)
Thesis (Ph.D.)--York University, 2009. Graduate Programme in Earth and Space Science. / Typescript. Includes bibliographical references (leaves 168-181). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:NR51751
2

Automated Tree Crown Discrimination Using Three-Dimensional Shape Signatures Derived from LiDAR Point Clouds

Sadeghinaeenifard, Fariba 05 1900 (has links)
Discrimination of different tree crowns based on their 3D shapes is essential for a wide range of forestry applications, and, due to its complexity, is a significant challenge. This study presents a modified 3D shape descriptor for the perception of different tree crown shapes in discrete-return LiDAR point clouds. The proposed methodology comprises of five main components, including definition of a local coordinate system, learning salient points, generation of simulated LiDAR point clouds with geometrical shapes, shape signature generation (from simulated LiDAR points as reference shape signature and actual LiDAR point clouds as evaluated shape signature), and finally, similarity assessment of shape signatures in order to extract the shape of a real tree. The first component represents a proposed strategy to define a local coordinate system relating to each tree to normalize 3D point clouds. In the second component, a learning approach is used to categorize all 3D point clouds into two ranks to identify interesting or salient points on each tree. The third component discusses generation of simulated LiDAR point clouds for two geometrical shapes, including a hemisphere and a half-ellipsoid. Then, the operator extracts 3D LiDAR point clouds of actual trees, either deciduous or evergreen. In the fourth component, a longitude-latitude transformation is applied to simulated and actual LiDAR point clouds to generate 3D shape signatures of tree crowns. A critical step is transformation of LiDAR points from their exact positions to their longitude and latitude positions using the longitude-latitude transformation, which is different from the geographic longitude and latitude coordinates, and labeled by their pre-assigned ranks. Then, natural neighbor interpolation converts the point maps to raster datasets. The generated shape signatures from simulated and actual LiDAR points are called reference and evaluated shape signatures, respectively. Lastly, the fifth component determines the similarity between evaluated and reference shape signatures to extract the shape of each examined tree. The entire process is automated by ArcGIS toolboxes through Python programming for further evaluation using more tree crowns in different study areas. Results from LiDAR points captured for 43 trees in the City of Surrey, British Columbia (Canada) suggest that the modified shape descriptor is a promising method for separating different shapes of tree crowns using LiDAR point cloud data. Experimental results also indicate that the modified longitude-latitude shape descriptor fulfills all desired properties of a suitable shape descriptor proposed in computer science along with leaf-off, leaf-on invariance, which makes this process autonomous from the acquisition date of LiDAR data. In summary, the modified longitude-latitude shape descriptor is a promising method for discriminating different shapes of tree crowns using LiDAR point cloud data.
3

Topics on Machine Learning under Imperfect Supervision

Yuan, Gan January 2024 (has links)
This dissertation comprises several studies addressing supervised learning problems where the supervision is imperfect. Firstly, we investigate the margin conditions in active learning. Active learning is characterized by its special mechanism where the learner can sample freely over the feature space and exploit mostly the limited labeling budget by querying the most informative labels. Our primary focus is to discern critical conditions under which certain active learning algorithms can outperform the optimal passive learning minimax rate. Within a non-parametric multi-class classification framework,our results reveal that the uniqueness of Bayes labels across the feature space serves as the pivotal determinant for the superiority of active learning over passive learning. Secondly, we study the estimation of central mean subspace (CMS), and its application in transfer learning. We show that a fast parametric convergence rate is achievable via estimating the expected smoothed gradient outer product, for a general class of covariate distribution that admits Gaussian or heavier distributions. When the link function is a polynomial with a degree of at most r and the covariates follow the standard Gaussian, we show that the prefactor depends on the ambient dimension d as d^r. Furthermore, we show that under a transfer learning setting, an oracle rate of prediction error as if the CMS is known is achievable, when the source training data is abundant. Finally, we present an innovative application involving the utilization of weak (noisy) labels for addressing an Individual Tree Crown (ITC) segmentation challenge. Here, the objective is to delineate individual tree crowns within a 3D LiDAR scan of tropical forests, with only 2D noisy manual delineations of crowns on RGB images available as a source of weak supervision. We propose a refinement algorithm designed to enhance the performance of existing unsupervised learning methodologies for the ITC segmentation problem.

Page generated in 0.0236 seconds