• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of T2L2 (Time Transfer by Laser Link) on the Jason 2 ocean altimetry satellite and Micrometric laser ranging

Vrancken, Patrick 23 September 2008 (has links) (PDF)
Le schéma de T2L2 (Transfert de Temps par Lien Laser), basé sur la technologie de la télémétrie laser (SLR), représente un nouveau moyen pour la synchronisation d'horloges distantes. L'expérience T2L2 fut acceptée par le CNES en 2005 d'être embarqué sur le satellite d'altimétrie des mers Jason 2.<br />La première partie de ce travail traite la caractérisation intégrale de l'instrument spatial T2L2, incluant la calibration et l'évaluation de sa performance en métrologie de temps/fréquence. Ces tests furent menée à l'aide d'un banc de test de haute complexité, développé à l'Observatoire de la Côte d'Azur.<br />Par ailleurs, le document décrit un bilan des performances du schéma intégrale T2L2, incluant l'instrument spatial ainsi que le segment sol et autres contributeurs ; par conséquent on démontre la performance finale de tout le transfert de temps: Avec une stabilité de quelques picosecondes en intégrant pendant un passage du satellite, T2L2 permettra de comparer les horloges les plus avancés, incluant les fontaines atomiques. L'exactitude absolue d'un transfert de temps fut déterminé à moins que 50 ps en configuration vue commune.<br /><br />La deuxième partie du document présent est orientée autour l'extension de la technologie de télémétrie laser et T2L2 à la mesure absolue et de très haute résolution de distances en espace.<br />Cet objectif devra être atteint en utilisant un laser de peigne de fréquences en combinant la mesure de temps de vol avec une mesure interférométrique.<br />Le document décrit un pas important vers la faisabilité de cet approche, la mesure de distances en datation à très haute cadence et en mesure de phase, ce qui devrait permettre de franchir le seuil de la longueur d'onde.
2

Transfert de temps de haute performance : le Lien Micro-Onde de la mission ACES

Duchayne, Loïc 23 October 2008 (has links) (PDF)
Les méthodes de transfert de temps actuelles atteignent des performances telles que leur utilisation permet de tester les lois de la Physique Fondamentale. Dans ce cadre, la mission ACES vise, entre autres, l'étude des effets de la Gravitation sur le battement des horloges à travers un lien de communication performant, le Lien Micro-Onde. Ce manuscrit se focalise sur la comparaison des horloges de cette mission pour en développer un modèle précis au dixième de picoseconde. De ce modèle découle un algorithme de traitement des mesures brutes qui servira lors de la mission. Des tests de ce programme ont été réalisés à l'aide d'une simulation des mesures de la mission afin d'en évaluer les performances. Par ailleurs, les besoins de la mission en précision de l'orbitographie des stations et des calibrations temporelles de la mission sont approfondis et montrent de limites moins contraignantes que celles naïvement estimées. Enfin, la résolution statistique des ambiguïtés de phase est étudiée à l'aide d'un modèle réaliste de bruit des mesures. Ce travail conduit à des méthodes permettant de réduire considérablement le taux d'échec de cette détermination. Ce travail s'ouvre sur l'étude du projet SAGAS et de son concept avancé de lien optique. Des combinaisons de mesures et leur optimisation permettent d'évaluer les performances du projet sur plusieurs de ses objectifs scientifiques, tels que l'exploration spatiale, les tests des lois de la Gravitation ou les ondes gravitationnelles.
3

Contribution à l'étalonnage en absolu d'une chaîne de réception GNSS

Proia, Amandine 10 November 2011 (has links) (PDF)
Les chaînes de réception de signaux satellitaires de navigation (GNSS), composées d'un récepteur, d'un câble d'antenne et d'une antenne, sont l'outil le plus utilisé lors de comparaisons d'horloges atomiques distantes nécessaires pour le calcul du Temps Atomique International (TAI). L'étalonnage de ces liens de temps, consistant à déterminer leur retard électrique lors de la propagation du signal au travers du système d'acquisition, est nécessaire afin de garantir leur exactitude et leur stabilité long-terme. Deux techniques d'étalonnage sont actuellement recensées : la méthode différentielle et la méthode en absolu. La technique différentielle consiste à comparer l'ensemble de la chaîne de réception à étalonner avec une chaîne de référence dont le retard est connu. Cette dernière circule de laboratoires en laboratoires afin que le BIPM (Bureau International des Poids et Mesures) puisse déterminer le délai interne des équipements opérationnels installés dans les laboratoires visités. La technique d'étalonnage dite en absolu consiste à déterminer indépendamment le retard électrique interne de chaque élément de la chaîne de réception en utilisant des signaux simulés permettant de s'affranchir des bruits liés à la diffusion de signaux satellitaires. Le CNES développe cette technique depuis 2005. Les travaux de cette thèse contribuent au développement et à l'optimisation des méthodes d'étalonnage en absolu de chacun des éléments de la chaîne de réception afin de déterminer le retard global de le la chaîne d'acquisition avec une incertitude inférieure à une nanoseconde. Cette méthode d'étalonnage permet également de caractériser les performances de chacun des composants du système d'acquisition ainsi que la sensibilité thermique et hygrométrique des récepteurs.
4

Etude et développement de la méthode TWSTFT phase pour des comparaisons hautes performances d'étalons primaires de fréquence

Kanj, Amale 19 December 2012 (has links) (PDF)
La technique TWSTFT a démontré des performances remarquables par sa contribution dans l'organisation du TAI/UTC, en termes de stabilité des liens micro-ondes et d'incertitude combinée sur l'écart entre [UTC-UTC(k)]. Cependant, l'étroitesse de la bande passante des codes utilisés ne permet pas la comparaison à moins d'un jour des étalons primaires de fréquence, et le recours à l'utilisation de la phase des porteuses est une piste privilégiée. Ce travail de thèse consiste à étudier et développer la méthode two-way phase, choisie selon un ensemble de critères cohérents comme la disponibilité et la configuration adaptée de deux stations terriennes, la distribution adaptée des signaux d'horloges de hautes performances, la disposition d'un simulateur de satellite caractérisé et l'utilisation d'une même bande de fréquence satellite. La technique utilisée s'appuie simultanément sur des mesures two-way entre stations distantes et sur des mesures de ranging effectuées par chaque station, l'ensemble étant basé sur le principe de propagation liée à la vitesse des porteuses. De plus, une analyse expérimentale par le code et par la phase est effectuée et des solutions efficaces conduisant à la réduction du bruit des liens sont proposées. Les principaux résultats de mesures obtenus par la mise en œuvre de cette technique au laboratoire montrent une stabilité de fréquence de 1 x 10-12 à 1 s et de 3 x 10-14 à 100 s, avec deux stations alimentées par un même maser à hydrogène actif. Ce travail s'achève par notre contribution dans l'application de la technique de transfert de temps two-way sur un lien fibré long de 540 km en collaboration avec le LPL, révélant des résultats très prometteurs
5

Transfert de temps optique spatial (mission T2L2 / Jason-2) : applications et impacts en Géodésie / optical space time transfer (mission T2L2 / Jason-2) : applications and impacts in geodesy

Belli, Alexandre 16 February 2017 (has links)
Mes travaux de thèse ont pour finalité la réalisation d’un transfert de temps intercontinentald’une stabilité meilleure que 2 ns sur 10 000 s, entre les observatoires géodésiquesde l’International Laser Ranging Service (ILRS). Ce transfert de temps est effectué à l’aide deliens spatiaux optiques obtenus par l’expérience de Transfert de Temps par Lien Laser (T2L2).T2L2 a été lancée le 20 Juin 2008 à 1336 km d’altitude à bord du satellite océanographiqueJason-2. Le principe de cette expérience est basé sur la datation, au sol dans les stations laseret à bord du satellite, d’impulsions laser très courtes (30 - 100 ps) aller - retour (2 voies) venantde 25 stations laser réparties sur le Globe. La performance du lien sol-bord (dont la stabilitéatteint des valeurs inférieures à 10 ps sur 100 s), procurée par la technologie laser d’une partet par la qualité de l’instrument spatial d’autre part permet de lire précisément les variationsde l’oscillateur bord (à quartz) développé pour le système d’orbitographie et de localisationDoppler Orbitography and Radiopositionning Integrated by Satellite (DORIS) du Centre Nationald’Études Spatiales (CNES). Nous montrons qu’il est possible de construire un modèle defréquence déterministe, à court terme (10 j) et moyen terme (plusieurs mois) d’évolution de lafréquence de l’oscillateur bord DORIS, avec une précision relative de 3 - 5·10≠13. Les variationsde fréquence sont induites par un environnement spatial complexe, où les radiations, la températureet le vieillissement du résonateur dégradent l’oscillateur. L’intégration de ce modèlenous permet la réalisation d’un temps à bord pour synchroniser le réseau ILRS complet et ainsiestimer les biais en temps des stations laser par rapport à l’Universal Time Coordinate (UTC).L’effet des biais en temps, estimé à l’aide de T2L2 sur l’orbite ainsi que sur les coordonnées desstations laser de l’International Terrestrial Reference Frame (ITRF) est déterminé précisémentau niveau de quelques millimètres. Enfin T2L2 étant également capable de dater le Pulse ParSeconde (PPS) du système Global Positionning System (GPS), nous étudions l’évolution sur lelong terme (plusieurs années) des horloges utilisées dans les stations laser et nous montrons lesproblèmes insoupçonnés de l’instabilité de leur système de temps/fréquence au sol. / The purpose of my Ph.D. works is the realization of a intercontinental time transfer,with a stability better than 2 ns over 10,000 s, between the International Laser RangingService (ILRS) geodetics observatories. This time transfer is performed thanks to optical spacelinks and the Time Transfer by Laser Link (T2L2) experiment. T2L2 is a passenger on-board theoceanographic satellite Jason-2, which was launched the 20th June 2008, at 1336 km of altitude.The principle of this experiment is based on the (two-way) short laser pulses (30 - 100 ps) timetagging, in laser station on ground and on-board the satellite, which come from 25 worldwidelaser stations. The high performance of the ground-to-space link (where the stability reach valuesbetter than 10 ps over 100 s), given by the laser technology in one hand, and the quality of thespace instrument in the other hand, allows to precisely read the frequency variations of the onboardoscillators (quartz) built for the orbitography and localization Doppler Orbitography andRadiopositionning Integrated by Satellite (DORIS) French system. We demonstrate the possibilityto build a deterministic frequency model, on the short term (10 days), mid-term (severalsmonth) for the on-board DORIS oscillator frequency evolution, with a relative precision at 3- 5·10≠13. Frequency variations are caused by a complex space environment, where radiations,temperature and device aging damage the oscillator. The integration of this model allows us tobuild an "on-orbit" time realization to synchronize the whole ILRS network and thus, estimatelaser station time biases in regard to the Universal Time Coordinate (UTC). The time bias effects,estimate thanks to T2L2, on the International Terrestrial Reference Frame (ITRF) stationcoordinates, is precisely determined at the level of a few millimeters. Finally, T2L2 is able totime tagged the Global Positionning System (GPS) Pulse Per Second (PPS) signal in order tostudy the clock long term (several years) behavior in laser station and we show the unexpectedproblems due to the instability of the station time and frequency system.
6

Neutrino velocity measurement with the OPERA experiment in the CNGS beam / Mesure de la vitesse des neutrinos avec l'expérience OPERA sur le faisceau CNGS

Brunetti, Giulia 20 May 2011 (has links)
Les travaux de recherche présentés dans cette thèse étudient la vitesse des neutrinos mesurée par l’expérience OPERA sur le faisceau CNGS au CERN. Divers modèles théoriques de gravité quantique et d’extra-dimensions prévoient des effets importants sur la violation de la conservation de Lorentz qui serait observable par la mesure de la vitesse des neutrinos. L’expérience MINOS a publié en 2007 une mesure de la vitesse des neutrinos muoniques sur une distance de 730 km avec un écart par rapport à celui de la lumière de 126 ns avec une erreur statistique de 32 ns et une erreur systématique de 64 ns. L’expérience OPERA détecte également des neutrinos muoniques ayant parcourut 730 km avec une sensibilité significativement meilleure que MINOS grâce à une statistique plus élevée due à l’énergie plus élevée du faisceau et à le système de synchronisation entre OPERA et le faisceau CNGS beaucoup plus sophistiquée et modifié dans le but de réduire l’erreur systématique. Ce système est composé par des horloges au césium et de récepteurs GPS spéciaux fonctionnant en common view mode. Le tout permet un time transfer entre les deux sites précis à l’ordre de 1 ns. Un système d’échantillonnage à 1 GHz (fast waveform digitizer) capable de reconstruire la distribution temporelle des protons envoyés sur la cible du CNGS a été intégré au système existant de mesure du faisceau CNGS. Le résultat consiste en la mesure de la vitesse des neutrinos produits artificiellement avec la précision la plus élevée jamais atteinte: le temps de vol des neutrinos a été déterminé avec une incertitude statistique d’environ 10 ns et une incertitude systématique plus petite de 20 ns. / The thesis concerns the measurement of the neutrino velocity with the OPERA experiment in the CNGS beam. There are different theoretical models that allow for Lorentz violating effects which can be investigated with measurements on terrestrial neutrino beams. The MINOS experiment published in 2007 a measure on the muon neutrinos over a distance of 730 km finding a deviation with respect to the expected time of flight of 126 ns with a statistical error of 32 ns and a systematic error of 64 ns. The OPERA experiment observes as well muon neutrinos 730 km away from the source, with a sensitivity significantly better than MINOS thanks to the higher number of interactions in the detector due to the higher energy beam and the much more sophisticated timing system explicitly upgraded in view of the neutrino velocity measurement. This system is composed by atomic cesium clocks and GPS receivers operating in “common view mode”. Thanks to this system a time-transfer between the two sites with a precision at the level of 1 ns is possible. Moreover, a Fast Waveform Digitizer was installed along the proton beam line at CERN in order to measure the internal time structure of the proton pulses that are sent to the CNGS target. The result on the neutrino velocity is the most precise measurement so far with terrestrial neutrino beams: the neutrino time of flight was determined with a statistical uncertainty of about 10 ns and a systematic uncertainty smaller than 20 ns.
7

Étude et réalisation d’un nouveau système de référence spatio-temporel basé sur des liens inter-satellites dans une constellation GNSS / Study and realization of a new spatio-temporal reference system based on inter-satellite links in a GNSS constellation

Richard, Edouard 27 January 2016 (has links)
L'exactitude délivrée par les systèmes de positionnement globaux par satellites (GNSS) est un facteur clé pour de nombreuses applications scientifiques telles que le positionnement de points géodésiques ou d’autres satellites, l'établissement de systèmes de référence spatio-temporels, la synchronisation d’horloges ou encore l'étude directe du lien pour sonder l’atmosphère. L'augmentation de la constellation GNSS avec des mesures de pseudo-distances entre les satellites est une option prometteuse pour améliorer l'exactitude du système. Plusieurs études présentent l'apport qualitatif de ces liens inter-satellites (ISL), mais ne permettent pas de mesurer efficacement l'impact quantitatif de cette technologie. Dans cette thèse, nous avons effectué une étude différentielle entre un système classique (possédant seulement des liens standards espace-sol) et un système augmenté avec des ISL. Les deux systèmes sont étudiés sous les mêmes hypothèses et à travers le même code de calcul. Celui-ci est composé de deux parties distinctes et autonomes : une simulation d’observables sous la forme de pseudo-temps de vol bruités, et une analyse qui délivre, après ajustement des paramètres, les bilans d’erreurs quantitatifs. La comparaison des bilans d'erreurs quantitatifs associés aux deux systèmes nous permet d’établir, pour une même application donnée, les différences de performance relatives entre les deux systèmes. Les résultats obtenus permettent de franchir un pas de plus vers la validation de l’apport des liens inter-satellites et sont à considérer pour les versions futures des systèmes de navigation par satellites. / The accuracy reached by the Global Navigation Satellite Systems (GNSS) is critically important for many scientific applications such as geodetic point or satellite positioning, space-time reference frame realization, clocks synchronization or the study of the links to probe the atmosphere. One option for improving the system accuracy is the use of inter-satellite pseudo-range measurements, so called inter-satellite links (ISL). Several studies have shown the qualitative interest of ISL but do not allow to efficiently measure the quantitative impact of this new technology on space-time positioning. In this thesis, we present a differential study between a standard system (with standard satellite-to-ground links only) and system augmented by ISL. The two systems are compared under the same hypothesis and simulated within the same software. The software is made of two distinct and independent parts : the simulation which generates the noisy pseudo-ranges, and an analysis which uses a non linear adjustment procedure in order to recover the initial parameters of the simulation and compute the quantitative error budgets. For a given application, the quantitative comparison between the error budgets of both systems allow us to highlight the relative merits of the two configurations. Our results are a further step in the characterization of the interest of ISL and should prove useful for the design of future satellite navigation system design.
8

Transfert de temps à longue distance utilisant des liaisons à fibre optique et comparaison croisée avec des méthodes par satelliteires / Long range time transfer with optical fiber links and cross comparisons with satellite based methods

Kaur, Namneet 20 April 2018 (has links)
Les références de temps et de fréquence sont largement distribuées sur réseaux informatique et de communications, pour une large gamme d'applications scientifiques et industrielles. Poussé par une demande pour de meilleures performances, un certain nombre de nouvelles méthodes de transfert de temps et de fréquence sur des réseaux à fibres optiques ont été développées ces dernières années. Dans cette thèse, notre objectif est de développer une approche de transfert de temps et de fréquence multi-utilisateurs, compatible avec les réseaux de télécommunications et compétitive avec la distribution de temps par GNSS. Nous nous intéressons donc aux méthodes pour les réseaux à commutation par paquets, comme le NTP (Network Time Protocol) et le PTP (Precision Timing Protocol). Nous nous concentrons également sur les liaisons “unidirectionnelles”, où les signaux aller et retour entre les nœuds de réseau se propagent sur des fibres distinctes, non au sein d’une même fibre (liaisons “bidirectionnelles”). En particulier, nous utilisons une méthode appelée White Rabbit PTP (WR). Développée au CERN, basée sur PTP, utilisant l’Ethernet synchrone et d'autres techniques pour atteindre des performances élevées, WR réalise une stabilité du temps sous-nanoseconde pour la synchronisation d'instruments sur des réseaux à l'échelle de 10 km. Nous sommes particulièrement intéressés par l'extension de cette méthode pour la distribution de références au niveau régional ou national, sur des liaisons allant jusqu'à 1000 km.Nous étudions d’abord les performances de l'équipement réseau White Rabbit, en particulier le commutateur White Rabbit. Nous y apportons diverses améliorations : sur le verrouillage du commutateur grand maître à la référence externe, améliorant ainsi sa stabilité à court terme de plus d'un ordre de grandeur ; sur la bande passante de verrouillage du commutateur esclave ; et en augmentant le débit des messages PTP entre les commutateurs maître et esclave.Nous étudions ensuite les liaisons WR moyennes et longues distances. Nous construisons un lien unidirectionnel de 100 km en utilisant des bobines de fibres dans le laboratoire. Nous découvrons que la performance à court terme est limitée par la dispersion chromatique de la fibre, tandis que la performance à long terme est dégradée par le bruit thermique. Pour limiter l'effet de la dispersion chromatique sur les liaisons longue distance, nous proposons l'utilisation d'une approche en cascade. Nous réalisons un lien en cascade de 500 km, à nouveau avec des bobines de fibres. Nous utilisons le multiplexage en longueur d'onde dense pour construire ce lien par des passages multiples à travers des bobines plus courtes. Nous obtenons une stabilité de transfert de fréquence de 2 × 10-12 à une seconde de temps d'intégration et de 5 × 10-15 en un jour, limitée par le bruit thermique à long terme. Nous obtenons une stabilité temporelle de 5 ps à une seconde de temps d'intégration, diminuant jusqu'à un minimum de 1,2 ps à 20 secondes et restant inférieure à une nanoseconde pour des durées plus longues. Ces performances sont similaires à court terme, et deux ordres de grandeur meilleures à long terme, qu’un récepteur GPS de bonne qualité. Nous nous attendons à ce que les fluctuations thermiques et donc l'effet du bruit thermique des fibres soient réduits d'un facteur d'environ cinq pour les installations sur le terrain.Enfin, nous faisons des études préliminaires sur l'étalonnage en temps des liaisons WR. Le principal défi est de mesurer l'asymétrie de longueur optique entre les deux fibres utilisées pour le transfert des signaux aller et retour. Nous démontrons une technique d'échange de fibres, en utilisant une liaison suburbaine White Rabbit sur fibre noire. Nous décrivons et testons ensuite une nouvelle méthode variationnelle pour l'étalonnage, impliquant une méthode de mesure différentielle basée sur l'exploitation de deux liaisons WR à différentes longueurs d'onde sur la même liaison. / Time and frequency references are widely distributed over communications and computer networks, for a variety of scientific and industrial applications. Driven by a demand for improved performance, a number of new methods for time and frequency transfer over optical fiber-based networks have been developed in recent years. In this thesis our objective is to develop a scalable network time and frequency transfer approach, providing multi-user dissemination, compatible with large telecommunication networks and competitive with GNSS-based time distribution. Therefore we are concerned with methods for use in packet-based networks, like the Network Time Protocol (NTP) and Precision Timing Protocol (PTP). We also concentrate on “unidirectional” links, where the forward and backward signals between network nodes propagate over separate fibers, not within the same fiber (“bidirectional” links).In particular we use a method called White Rabbit PTP (WR). This is a novel technology developed at CERN, based on PTP while using Synchronous Ethernet and other techniques to achieve high performance. It demonstrates sub-nanosecond time stability and synchronization of arrays of instruments over 10 km scale networks. We are particularly interested in extending this method for large scale distribution of references at regional or national level, over links of up to 1000 km.We first study extensively the default performances and limitations of White Rabbit network equipment, in particular the White Rabbit switch. We make various improvements to its operation: on the locking of the grandmaster switch to the external reference, thus improving its short-term stability by more than an order of magnitude; optimizing the locking bandwidth of the slave switch; and increasing the PTP messaging rate between master and slave switches.We then study medium and long-distance WR links. We construct a 100 km, unidirectional link using fiber spools in the laboratory. We discover that the short-term performance is limited by chromatic dispersion in the fiber, while the long-term performance is degraded by the influence of temperature variations on the fiber. To limit the effect of chromatic dispersion for long-haul links, we propose the use of a cascaded approach. We realise a national scale, cascaded, 500 km link, again utilizing fiber spools. We use Dense Wavelength Division Multiplexing methods to construct this link by mutliple passages through shorter spools. We achieve a frequency transfer stability of 2 × 10−12 at one second of integration time and 5 × 10−15 at one day, limited by thermal noise in the long term. We achieve a time stability of 5 ps at one second of integration time, decreasing to a minimum of 1.2 ps at 20 seconds and remaining below one nanosecond for longer averaging times. These performances are similar in the short term, and two orders of magnitude better in the long term, than good quality GPS receivers. We expect thermal fluctuations and therefore the effect of fiber thermal noise to be suppressed by a factor of approximately five for installations in the field.Finally we make preliminary investigations of time calibration of WR links. The main challenge here is to measure the optical length asymmetry between the two fibers used for signal transfer in the forward and backward directions. We demonstrate a fiber swapping technique, using a mid range, suburban White Rabbit link over dark fiber. We then describe and test a new variational method for calibration, involving a differential measurement method based on operating two WR links at different wavelengths over the same optical fiber link.In conclusion, we demonstrate high performance, long haul White Rabbit links for time and frequency dissemination to multiple users. With the level of frequency transfer performance achieved, White Rabbit PTP provides a competitive and scalable technique for comparing industrial atomic clocks at regional and national scales.

Page generated in 0.095 seconds