• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 61
  • 21
  • 13
  • 11
  • 11
  • 11
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Physical understanding of tire transient handling behavior

Sarkisov, Pavel 05 July 2019 (has links)
Increasing vehicle performance requirements and virtualization of its development process require more understanding of physical background of tire behavior, especially in transient rolling conditions with combined slip. The focus of this research is physical description of transient generation of tire lateral force and aligning torque. Using acceleration measurement on the tire inner liner it was observed that the contact patch shape of the rolling tire changes nonlinearly with slip angle and becomes asymmetric. Optical measurement outside and inside the tire has clarified that carcass lateral bending features both shear and rotation angle of its cross-sections. A physical simulation model was developed, which considers the observed effects. A special iterative computing algorithm was proposed. The model was qualitatively validated using not only tire force and torque responses, but also deformation of the tire carcass. The model-based analysis explained which tire structural parameters are responsible for which criteria of tire performance. Contact patch shape change had a low impact on lateral force and aligning torque. Variation of carcass bending behavior perceptibly influenced aligning torque generation. As an example, the gained understanding was applied for feasibility analysis of a novel method to estimate the utilized friction potential rate of a rolling tire.:1 Introduction 1.1 Thesis structure 1.2 Motivation 1.3 State of the art 1.4 Mission statement 1.5 Main terms and hypotheses 1.6 Summary of chapter 1 2 Experimental investigation of tire deformation 2.1 Introduction to experimental research 2.2 Test samples 2.3 Experimental equipment 2.4 Contact patch pressure distribution 2.5 Contact patch geometry of the rolling tire 2.6 Tire carcass deformation 2.7 Tread block properties 2.8 Summary of chapter 2 3 Simulation method of tire deformation behavior 3.1 Concept development 3.2 Physical representation of the model 3.3 Model computing method 3.4 Model parameterization routine 3.5 Model validation 3.6 Summary of chapter 3 4 Model-based analysis 4.1 Understanding of the physical background 4.2 An example of application 4.3 Summary of chapter 4 5 Investigation summary and discussion 5.1 Key results 5.2 Discussion, critique and outlook References List of abbreviations List of symbols List of tables List of figures Appendix

Page generated in 0.0549 seconds