• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 13
  • Tagged with
  • 33
  • 33
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

An SRAM system based on a reduced-area four-transistor CMOS SRAM cell

De Beer, Stephan Joseph 27 October 2005 (has links)
The traditional method of implementing SRAM in CMOS is via a six-transistor cell and five routing lines. If the number of transistors and the number of wires could be reduced, the packing density of the memory cells could be increased, and the area reduced. This document describes the design of an SRAM system based on a new four¬transistor SRAM cell. The primary design goal was to create a functional system, so that the relationship between reduced cell area and a potentially reduced system area could be investigated. A new write method and associated array structure has been used, and the design of the system parameters was accomplished using static noise margin theory. The power dissipation and percentage reduction in cell area have been improved over previous designs. The circuits to achieve the access to the cell have been designed and simulated. These include low-impedance driver circuits, that allow the power supply of the cell's devices to be individually modified to read and write the cell, and a current sense amplifier system to convert the output current to a digital voltage. These circuits allow complete and accurate control to be achieved, but a price is paid for the complexity in terms of layout area. The SRAM system emulates a standard SRAM, and could therefore be used to replace current SRAM implementations. The design was simulated on a system level, and found to operate correctly. Although it is outperformed by its six-transistor cell counterpart in terms of power dissipation, speed and layout area, the groundwork for defining further research and improving the characteristics of further designs has been laid. / Dissertation (MEng (Electronic Engineering))--University of Pretoria, 2002. / Electrical, Electronic and Computer Engineering / unrestricted
32

An automatic test pattern generation in the logic gate level circuits and MOS transistor circuits at Ohio University

Lee, Hoon-Kyeu January 1986 (has links)
No description available.
33

Compact Modeling of Short Channel Common Double Gate MOSFET Adapted to Gate-Oxide Thickness Asymmetry

Sharan, Neha January 2014 (has links) (PDF)
Compact Models are the physically based accurate mathematical description of the cir-cuit elements, which are computationally efficient enough to be incorporated in circuit simulators so that the outcome becomes useful for the circuit designers. As the multi-gate MOSFETs have appeared as replacements for bulk-MOSFETs in sub-32nm technology nodes, efficient compact models for these new transistors are required for their successful utilization in integrated circuits. Existing compact models for common double-gate (CDG) MOSFETs are based on the fundamental assumption of having symmetric gate oxide thickness. In this work we explore the possibility of developing models without this approximation, while preserving the computational efficiency at the same level. Such effort aims to generalize the compact model and also to capture the oxide thickness asymmetry effect, which might prevail in practical devices due to process uncertainties and thus affects the device performance significantly. However solution to this modeling problem is nontrivial due to the bias-dependent asym-metric nature of the electrostatic. Using the single implicit equation based Poisson so-lution and the unique quasi-linear relationship between the surface potentials, previous researchers of our laboratory have reported the core model for such asymmetric CDG MOSFET. In this work effort has been put to include Non-Quasistatic (NQS) effects, different small-geometry effects, and noise model to this core, so that the model becomes suitable for practical applications. It is demonstrated that the quasi-linear relationship between the surface potentials remains preserved under NQS condition, in the presence of all small geometry effects. This property of the device along with some other new techniques are used to develop the model while keeping the mathematical complexity at the same level of the models reported for the symmetric devices. Proposed model is verified against TCAD simulation for various device geometries and successfully imple-mented in professional circuit simulator. The model passes the source/drain symmetry test and good convergence is observed during standard circuit simulations.

Page generated in 0.0631 seconds