• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 13
  • Tagged with
  • 33
  • 33
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The automatic test pattern generation in the logic gate level circuits and MOS transistor circuits at Ohio University

Lee, Hoon-Kyeu. January 1986 (has links)
Thesis (M.S.)--Ohio University, November, 1986. / Title from PDF t.p.
12

Design of an integrated circuit DTL NAND gate

Goh, Wee Leng, January 1971 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1971. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
13

A class B transistor amplifier with constant current power supply

Ball, Alan Samuel, January 1967 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1967. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
14

Current-switching circuitry

Salvador, Jack Gilbert. January 1960 (has links)
Thesis (M.S. in Electrical Engineering)--University of California, Berkeley, Jan. 1960. / Includes bibliographical references (leaf 33).
15

Analysis and measurement of charge injection in switched-capacitor circuits

Shen, Min 10 March 1998 (has links)
It has been verified by theoretical analysis, circuit simulation and test that two switch transistors in parallel in a simple sample and hold circuit can be achieve high speed with low error voltage due to charge injection. The wide transistor provides low RC time constant when it is closed and the narrow one ensures a low error voltage. However, tradeoff can be made in a specific application. A concise analytical expression for switch-induced error voltage on a switched capacitor is derived in this thesis. It can help designer to make the optimum decision. Experimentally, it was found that the optimum size of the wide transistor is several times wider than the narrow one. Delayed clock scheme can be used to make charge injection signal-independent in a basic integrator structure. Using two transistors with different sizes and clock duty cycles in parallel can take advantage of the fast speed of the wide transistor and the small charge injection error of the small transistor. However, the combination of the two devices, including the size and clock duty cycles, should be chosen carefully to achieve the improvement. / Graduation date: 1998
16

Organic transistor based circuits as drivers for planar microfluidic devices

Nadkarni, Suvid Vikas, 1981- 29 August 2008 (has links)
The work presented in this dissertation is focused on integrating organic transistor based circuits with planar microfluidic devices for discrete droplet handling. Discrete droplet based microfluidic systems are being increasingly investigated for lab-on-a-chip type applications. An essential component of a lab-on-a-chip system is the drive circuitry that runs the system. Conventionally, a variety of schemes have been implemented for acting as drivers for microfluidic devices. Organic transistor based circuits offer a viable and cost-effective option for serving as drivers for planar microfluidic devices. The magnitudes of voltages and the time scales involved in implementing these discrete droplet based systems are in good agreement with the values of voltages that can be reliably generated using organic transistor based circuits. Thus, the union of two cost-effective technologies with the ability to perform a wide variety of functions in a lab-on-a-chip type system would be highly desirable. A simple, planar microfluidic device with an open structure is implemented on a glass substrate. The device is optimized for reliable and repeatable performance using Cytop as the insulating dielectric. Cytop provides a highly hydrophobic surface for reversible wetting to take place on the application of electrical voltage. Various organic transistor based circuits are fabricated using Pentacene as the p-type semiconducting material and N,N'-bis(n-octyl)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI-8CN₂) as the n-type material. A top contact inverter, which is the most basic complementary metal oxide semiconductor circuit is fabricated and used as the driver for the planar microfluidic device. The output voltages generated by the inverter are used to actuate discrete water droplets over adjacent electrodes and also to perform merging of droplets, which is another basic functional operation that is performed on lab-on-a-chip type assemblies. Reliable and repeatable performance of the microfluidic device as well as the CMOS circuit is achieved. This work presents the first implementation of a discrete droplet based device driven by electrical voltages generated by an organic transistor based circuit. The physical mechanisms that are responsible for the motion of droplets have been investigated and contributions from electrowetting forces and dielectrophoretic forces have been resolved.
17

Power control circuits utilizing transistors

Fischer, Israel Lou, 1932- January 1961 (has links)
No description available.
18

Organic transistor based circuits as drivers for planar microfluidic devices

Nadkarni, Suvid Vikas, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
19

Thin film superconductive integrated circuits

Hoel, Lorentz Sigmund, January 1971 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1971. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
20

Planar unijunction transistors for a neuristor realization

Wise, Joseph Brinton, 1941- January 1968 (has links)
No description available.

Page generated in 0.0598 seconds