• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Thermodynamic investigations of transition metal systems containing coabon and nitrogen

Teng, Lidong January 2004 (has links)
<p>In view of the important applications of carbides and carbo-nitrides of transition metals in the heat-resistant and hard materials industries, the thermodynamic activities of Cr and Mn in the Cr-C, Fe-Cr-C, Mn-Ni-C and Mn-Ni-C-N systems have been studied in the present work by the use of the galvanic cell technique. CaF<sub>2</sub><sup> </sup>single crystals were used as the solid electrolyte. The phase relationships in selected regions of the systems in question were investigated by the use of the equilibration technique. The phase compositions and microstructures of the alloys were analysed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM).</p><p>In the Cr-C system, the Gibbs energy of formation of Cr3C2 were obtained from ElectroMotive Force (EMF) measurements conducted in the temperature range 950-1150 K. The values of the enthalpy of formation of Cr<sub>3</sub>C<sub>2</sub> were evaluated by the third-law method. The ground-state energy of the hypothetic end-member compound CrC3, in the bcc structure at 0 K, was calculated by use of the Ab-initio method. Based on the obtained results the Cr-C system was reassessed by use of the CALPHAD approach.</p><p>In the Fe-Cr-C system, 16 different alloys were quenched at 1223 K and their equilibrium phases identified by XRD. The experimental results show that the substitution of Cr by Fe in the (Cr,Fe)<sub>7</sub>C<sub>3</sub> carbide changes the lattice parameters of the phase. A slight decrease of the lattice parameters with an increase in the Fe content was established. The lattice parameters of the γ-phase in the Fe-Cr solid solution did also show a decrease with an increase of the Fe content. The activities of chromium in Fe-Cr-C alloys were investigated in the temperature range 940-1155 K. The activity of chromium decreases with an increase in the Fe content when the ratio of C/(Cr+C) was constant. It was also established that the activity of chromium decreases with an increase of the carbon content when the iron content was constant. The experimental results obtained were compared with the data calculated by use of the Thermo-Calc software. </p><p>In the Mn-Ni-C system the phase relationships were investigated at 1073 K as well as at 1223 K. The experimental results obtained showed that the site fraction of Ni in the metallic sublattice of the carbides M<sub>23</sub>C<sub>6</sub>, M<sub>7</sub>C<sub>3</sub> and M<sub>5</sub>C<sub>2</sub> (M=Mn and Ni) was quite low (approximately 2~3 percent). The activities of manganese in Mn-Ni-C alloys were investigated in the temperature range 940-1165 K. The three-phase region γ/M<sub>7</sub>C<sub>3</sub>/graphite was partly constructed at 1073 K. </p><p>In the Mn-Ni-C-N system, nitrogen was introduced into Mn-Ni-C alloys by equilibrating with N2 gas. It was established that the solubility of nitrogen in the investigated alloys was effected by the carbon content, and that a (Mn,Ni)<sub>4</sub>(N,C) compound was formed in the nitrided alloys. EMF measurements were performed on Mn-Ni-C-N alloys in the temperature interval 940-1127 K. The addition of nitrogen to Mn-Ni-C alloys was found to decrease the activity of manganese. The negative effect of nitrogen on the activity of manganese was found to decrease as the carbon content increased.</p><p><b>Keywords:</b> Thermodynamic activity; Galvanic cell technique; Transition metal carbides; Transition metal nitrides; Phase equilibrium; Thermodynamics; Differential thermal analysis; Scanning electron microscopy; Transmission electron microscopy; Ab-initio calculations; CALPHAD approach;</p>
12

A Theoretical Treatise on the Electronic Structure of Designer Hard Materials

Hugosson, Håkan Wilhelm January 2001 (has links)
<p>The subject of the present thesis is theoretical first principles electronic structure calculations on designer hard materials such as the transition metal carbides and oxides. The theoretical investigations have been made in close collaboration with experimental research and have addressed both bulk electronic properties and surface electronic properties of the materials.</p><p>Among the bulk studies are investigations on the effects of substoichiometry on the relative phase stabilities and the electronic structure of several phases of MoC and the nature of the resulting vacancy peaks. The changes in phase stabilities and homo-geneity ranges in the group IV to VI transition metal carbides have been studied and explained, from calculations of the T=0 energies of formation and cohesive energies. The anomalous volume behavior and phase stabilities in substoichiometric TiC was studied including effects of local relaxations around the vacancy sites. The vacancy ordering problem in this compound was also studied by a combination of electronic structure calculations and statistical physics.</p><p>The studies of the surface electronic properties include research on the surface energies and work functions of the transition metal carbides and an investigation on the segregation of transition metal impurities on the TiC (100) surface.</p><p>Theoretical studies with the aim to facilitate the realization of novel designer hard materials were made, among these a survey of means of stabilizing potentially super-hard cubic RuO<sub>2</sub>, studying the effects of alloying, substoichiometry and lattice strains. A mechanism for enhancing hardness in the industrially important hard transition metal carbides and nitrides, from the discovery of multi-phase/polytypic alloys, has also been predicted from theoretical calculations.</p>
13

Thermodynamic investigations of transition metal systems containing coabon and nitrogen

Teng, Lidong January 2004 (has links)
In view of the important applications of carbides and carbo-nitrides of transition metals in the heat-resistant and hard materials industries, the thermodynamic activities of Cr and Mn in the Cr-C, Fe-Cr-C, Mn-Ni-C and Mn-Ni-C-N systems have been studied in the present work by the use of the galvanic cell technique. CaF2single crystals were used as the solid electrolyte. The phase relationships in selected regions of the systems in question were investigated by the use of the equilibration technique. The phase compositions and microstructures of the alloys were analysed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). In the Cr-C system, the Gibbs energy of formation of Cr3C2 were obtained from ElectroMotive Force (EMF) measurements conducted in the temperature range 950-1150 K. The values of the enthalpy of formation of Cr3C2 were evaluated by the third-law method. The ground-state energy of the hypothetic end-member compound CrC3, in the bcc structure at 0 K, was calculated by use of the Ab-initio method. Based on the obtained results the Cr-C system was reassessed by use of the CALPHAD approach. In the Fe-Cr-C system, 16 different alloys were quenched at 1223 K and their equilibrium phases identified by XRD. The experimental results show that the substitution of Cr by Fe in the (Cr,Fe)7C3 carbide changes the lattice parameters of the phase. A slight decrease of the lattice parameters with an increase in the Fe content was established. The lattice parameters of the γ-phase in the Fe-Cr solid solution did also show a decrease with an increase of the Fe content. The activities of chromium in Fe-Cr-C alloys were investigated in the temperature range 940-1155 K. The activity of chromium decreases with an increase in the Fe content when the ratio of C/(Cr+C) was constant. It was also established that the activity of chromium decreases with an increase of the carbon content when the iron content was constant. The experimental results obtained were compared with the data calculated by use of the Thermo-Calc software. In the Mn-Ni-C system the phase relationships were investigated at 1073 K as well as at 1223 K. The experimental results obtained showed that the site fraction of Ni in the metallic sublattice of the carbides M23C6, M7C3 and M5C2 (M=Mn and Ni) was quite low (approximately 2~3 percent). The activities of manganese in Mn-Ni-C alloys were investigated in the temperature range 940-1165 K. The three-phase region γ/M7C3/graphite was partly constructed at 1073 K. In the Mn-Ni-C-N system, nitrogen was introduced into Mn-Ni-C alloys by equilibrating with N2 gas. It was established that the solubility of nitrogen in the investigated alloys was effected by the carbon content, and that a (Mn,Ni)4(N,C) compound was formed in the nitrided alloys. EMF measurements were performed on Mn-Ni-C-N alloys in the temperature interval 940-1127 K. The addition of nitrogen to Mn-Ni-C alloys was found to decrease the activity of manganese. The negative effect of nitrogen on the activity of manganese was found to decrease as the carbon content increased. Keywords: Thermodynamic activity; Galvanic cell technique; Transition metal carbides; Transition metal nitrides; Phase equilibrium; Thermodynamics; Differential thermal analysis; Scanning electron microscopy; Transmission electron microscopy; Ab-initio calculations; CALPHAD approach;
14

A Theoretical Treatise on the Electronic Structure of Designer Hard Materials

Hugosson, Håkan Wilhelm January 2001 (has links)
The subject of the present thesis is theoretical first principles electronic structure calculations on designer hard materials such as the transition metal carbides and oxides. The theoretical investigations have been made in close collaboration with experimental research and have addressed both bulk electronic properties and surface electronic properties of the materials. Among the bulk studies are investigations on the effects of substoichiometry on the relative phase stabilities and the electronic structure of several phases of MoC and the nature of the resulting vacancy peaks. The changes in phase stabilities and homo-geneity ranges in the group IV to VI transition metal carbides have been studied and explained, from calculations of the T=0 energies of formation and cohesive energies. The anomalous volume behavior and phase stabilities in substoichiometric TiC was studied including effects of local relaxations around the vacancy sites. The vacancy ordering problem in this compound was also studied by a combination of electronic structure calculations and statistical physics. The studies of the surface electronic properties include research on the surface energies and work functions of the transition metal carbides and an investigation on the segregation of transition metal impurities on the TiC (100) surface. Theoretical studies with the aim to facilitate the realization of novel designer hard materials were made, among these a survey of means of stabilizing potentially super-hard cubic RuO2, studying the effects of alloying, substoichiometry and lattice strains. A mechanism for enhancing hardness in the industrially important hard transition metal carbides and nitrides, from the discovery of multi-phase/polytypic alloys, has also been predicted from theoretical calculations.
15

A Theoretical Perspective on the Chemical Bonding and Structure of Transition Metal Carbides and Multilayers

Råsander, Mikael January 2010 (has links)
The present thesis deals with a theoretical description of issues regarding chemical bonding, structure and stability of transition metal carbides and multilayered structures. First principles density functional theory has been used extensively to investigate the properties of alloyed solutions of transition metal carbides. Joint theoretical and experimental investigations have shown that there is a driving force for carbon to be released from these ternary carbide systems as a response to the alloying. This release of carbon was shown to yield favorable lubricating properties in the case of alloyed solutions of Ti-Al-C, that were not present in the case of pure TiC, a property that can be used to design new materials that combine high hardness with favorable tribological properties. From calculations of the activation energy of C diffusion in the vicinity of substitutional transition metal impurities (M) in TiC, it is found that the mobility of C atoms is increased due to the presence of the impurities. The lowering of the activation energy barriers suggests that the mobility of C in alloyed solutions of Ti-M-C is increased and will be more pronounced at lower temperature than for C diffusion in TiC. The magnetic properties of alloyed solutions of Ti-Fe-C has been investigated using both theory and experiment. Theoretical calculations reveal that the magnetic moment and the critical temperature increase when increasing the Fe content as well as when lowering the C content in the system. Furthermore, the magnetic exchange parameters between Fe atoms were found to clearly reflect changes in the chemical bonding when varying the C content. Experimentally the magnetic properties were found to be rather substantial. Furthermore, the magnetic properties changes upon annealing due to the formation of Fe-rich and Fe-poor regions in the system. After long enough annealing times precipitates of α-Fe are formed which is consistent with theoretical predictions. The interaction between TiC(111) surfaces and C in the form of graphite has also been investigated. For these systems it was found that graphite was rather strongly bonded to the carbide surface and that the atomic as well as electronic structure at the interface depend on the termination of the carbide surface. This research was motivated by the recent interest in graphene, but also to investigate how carbide grains interacts with C when dispersed in a carbon matrix. A model for the calculation of structural parameters in multilayer structures has been presented and evaluated. The model is based on classical elasticity theory and uses the elastic constants of the materials constituting the multilayer as the only input.
16

Atomistic simulation and experimental studies of transition metal systems involving carbon and nitrogen

Xie, Jiaying January 2006 (has links)
The present work was initiated to investigate the stability, structural and thermodynamic properties of transition metal carbides, nitrides and carbo-nitrides by atomistic simulations and experimentations. The interatomic pair potentials of Cr-Cr, Mn-Mn, Fe-Fe, C-C, Cr-C, Mn-C, Fe-C, Cr-Fe, Cr-N and Mn-N were inverted by the lattice inversion method and ab initio cohesive energies, and then employed to investigate the properties of Cr-, Mn- and Fe-carbides by atomistic simulations in this work. For the binary M7C3 carbide, the structural properties of M7C3 (M = Cr, Mn, Fe) were investigated by atomistic simulations. The results show that the stable structure for these compounds is hexagonal structure with P63mc space group. The cohesive energy of M7C3 calculated in this work indicates that the stability of carbides decreases with the increasing in metal atomic number. Further, the vibrational entropy of Cr7C3 was calculated at different temperatures and compared with the entropy obtained by experimentations. The comparison demonstrates that the main contribution to the entropy is made by the vibrational entropy. For the binary τ-carbides, the structural properties of Cr23C6 and Mn23C6, as well as the vibrational entropy of Cr23C6 were computed. Further, the site preference of ternary element Fe among 4a, 8c, 32f and 48h symmetry sites in Cr23-xFexC6 was studied. It has been seen that Fe atoms would firstly occupy 4a sites and then 8c sites. The lattice constant and stability of Cr23-xFexC6 were also computed with different Fe content. In order to understand the relative stability of the transition metal carbides and nitrides, the standard formation Gibbs energies of carbides and nitrides for Cr, Mn and Fe were compared. The order of carbon and nitrogen affinities for Cr, Mn and Fe was further clarified by the comparison of the interatomic pair potentials among Cr-C, Mn-C, Fe-C, Cr-N and Mn-N. It was found that Cr-N interaction was very strong in comparison with other binary interactions above and consequently, nitrogen addition would lead to a strong decrease in the thermodynamic activity of chromium in Cr-containing alloys. This was confirmed by the investigations of thermodynamic activities of Cr in the Fe-Cr-N and Fe-Cr-C-N alloys. The activities were measured in the temperature range 973-1173 K by solid-state galvanic cell method involving CaF2 solid electrolyte under the purified N2 gas. In addition, the analysis of nitrogen content and phase relationships in the Fe-Cr-N and Fe-Cr-C-N alloys equilibrated at 1173 K were carried out by inert-gas fusion thermal conductivity method, X-ray diffraction and scanning electron microscopy technique. The experimental results show that the solubility of nitrogen in the alloys decreases with the decreasing chromium content, as well as the increasing temperature. The addition of nitrogen to the alloys was found to have a strong negative impact on the Cr activity in Fe-Cr-N and Fe-Cr-C-N systems. / QC 20100929
17

Study On Reactive Hot Pressing Of Zirconium Carbide

Chakrabarti, Tamoghna 12 1900 (has links) (PDF)
Group IV transition metal carbides are promising materials for high temperature structural application, due to their unique sets of properties such as high melting temperature, high temperature strength, hardness, elastic modulus, wear and corrosion resistance, metal-like thermal and electrical conductivity and thermal shock resistance. This group includes zir-conium carbide, which, along with its composites, are potential candidates for applications such as nose cones for re-entry vehicle, engines, wear resistant parts and in nuclear fuel cladding. Such structural applications demand high strength material with minimal flaws, in order to achieve the required reliability. Attainment of high strength calls for fully dense material with as small a grain size as possible. Producing fully dense zirconium carbide requires very high temperature, which is a direct consequence of its high melting point. Higher processing temperatures increase grain size, thereby also causing a loss in strength, along with the increased cost. Therefore, there is always a driving force to produce such a material in fully densified form at as low a temperature as possible. There have been a number of studies on processing and densification of zirconium carbide. Pressureless sintering of zirconium carbide requires temperature of 2400oC-3000oC to reach reasonably high density. At such high temperatures, abnormal grain growth limits the final density, as pores get entrapped inside the grains. Hot pressing of zirconium carbide also requires upwards of 2000oC to reach high density and is the primary route to produce densified zirconium carbide product. Reactive hot pressing (RHP), is a relatively new processing approach. Here, the reaction between zirconium and carbon to produce zirconium carbide and the densification of the porous mass, occurs simultaneously. Study on reactive hot pressing of zirconium carbide have shown that, it is possible to achieve very high density at much lower temperatures 1600oC. Clearly, reactive processing is an exciting new technique to process zirconium carbide. However, there has been a lack of studies to understand why it provides better densification than conventional hot pressing. Such understanding is of paramount importance, as it can lead to better optimization of RHP and perhaps even lower the process temperature further. The objective of the present study is to understand the densification process in RHP of zirconium carbide through systematic and carefully designed experiments. A model of reactive hot pressing is also constructed to get more insight into the phenomenon. 0.1 Pressureless Reaction Sintering of Zirconium Car-bide Pressureless reaction sintering (RS) of zirconium carbide is studied to understand the role of stoichiometry and zirconium metal in densification. ZrC of four different stoichiometries are chosen for these sets of experiments which are conducted in vacuum at 1200oC and 1600oC for 1 hour to understand the role of stoichiometry. One sample of pure Zr is also sintered to elucidate the role of zirconium in densification. After reaction sintering, all the samples are characterized by density measurement, x-ray diffraction and microstructure, using scanning electron microscopy. After pressureless sintering at 1600oC, zirconium metal reaches the highest relative density of ~ 95%. Densification decreases monotonically with increasing stoichiometry. Zr+0.5C composition reaches the next best relative density (of 90%), while Zr+0.67C composition shows much lower densification. The other two compositions, Zr+0.8C and Zr+C, in contrast, display de-densification rather than densification. Since the pure zirconium sample reaches high density, it can, in principle, help in densification of the mixed powders before getting fully reacted. Non-stoichiometric carbides also exhibit higher diffusivity of carbon, which aids the densification and the greater the deviation from stoichiometry, the smaller the deleterious effects of de-densification from reaction. This troika of factors is responsible for the substantially better densification in non-stoichiometric carbide, compared to stoichiometric carbide. 0.2 Reactive Hot Pressing of Zirconium and Carbon Reactive hot pressing of zirconium carbide is explored with the emphasis on finding the underlying densification mechanism. The earlier proposed densification mechanism for RHP is the plastic flow of transient non-stoichiometric carbide. To differentiate the effect of transient phases from that of zirconium, RHP is carried out at 800oC. At this low temperature, transient phases cannot take part in plastic flow and subsequent densification. Thus, any densi cation at this temperature can be totally attributed to zirconium and the role of zirconium thus can be separated from that of transient phases. A combination of RHP and RS experiments are carried out at 1200oC to better understand the phenomenon. Again, ZrC carbide of four different stoichiometries are investigated in this RHP study. After RHP at 800oC, all the four different ZrC compositions reached more than 90% RD through plastic flow of the Zr leading to a continuous matrix with embedded graphite particles. Since the reaction remains incomplete at this temperature, it is clear that Zirconium alone is responsible for enabling densification at such a low temperature. It is therefore argued that any unreacted Zr would, at higher temperature, be able to drive densification even more. Thus, zirconium does not only participate in densification; it is a dominant factor enabling low temperature densification. Pressureless reaction sintering at 1200oC following the RHP at 800oC, results in de-densi fication, as the reaction between zirconium and carbon occurs with significant volume shrinkage. Since such shrinkage increases with stoichiometry of the carbide, the higher stoichiometry carbides are more susceptible to de-densification. RHP at 1200oC, mostly completes the reaction, but only ZrC0:5 reaches near theoretical density. Thus, the final density of the fully reacted mixture is arrived at through a combination of processes in which the more stoichiometric carbides suffer from not only the smaller metal content but also a greater volume shrinkage during reaction. Thus, ZrC0:5 reaches 99% RD whereas ZrC reaches only 85% RD. The interplay between these two processes may be controlled by a two step RHP begin-ning at 800oC followed by a ramp up to 1200oC. The higher RD achieved at 800 C results in a higher final density for all the four compositions. Thus, two step RHP is a novel way to get better densification in RHP of zirconium carbide. 0.3 Hot Pressing of Zirconium Carbide Powders of Different Stoichiometry In the literature, densification in RHP is mostly attributed to the presence of transient non-stoichiometric carbides. To examine this hypothesis, ZrC of three different stoichiometries are prepared and then subjected to hot pressing at the same temperature and pressure as the previous RHP experiments (i.e. 1200oC and 40MPa for 30 min). After the hot pressing experiments, ZrC0:5 composition shows significant densification (95% RD), whereas ZrC0:67 composition shows very limited densification (70% RD) and ZrC composition shows little or no densification (50% RD). Evidently, the transient phase formed with stoichiometry close to ZrC0:5 can certainly contribute substantially to densification. But for the more carbon-rich compositions, the transient phases do not appear to play a significant role and the benefit of RHP, wherein ZrC can reach 90% RD, must come from the contribution of metal plasticity. 0.4 Reactive Hot Pressing of Zirconium and Zirconium Carbide Two limiting factors for densification during RHP are, de-densification (courtesy of the reaction) and the gradual increase in volume fraction of a rigid, non-sintering phase. To investigate the role of these factors further, two compositions of mixed metal and carbide powders, namely Zr+ZrC and 0.5Zr+ZrC, are subjected to RHP. When reaction is complete, the compositions after RHP will correspond to ZrC0:5 and ZrC0:67, respectively, but with the following difference with respect to the metal-carbon mixtures investigated earlier: these new compositions do not experience de-densification due to reaction and they contain significantly more amount of hard phase (53 and 69%) in the starting composition than their zirconium and carbon mixture counterparts i.e. Zr+0.5C and Zr+0.67C (16 and 20%). These two compositions are subjected to the same process schedules, i.e., RHP at 800oC, pressureless reaction sintering at 1200oC following RHP at 800oC and two step 800oC and 1200oC RHP. After 800oC RHP, Zr+ZrC and 0.5Zr+ZrC compositions reach much lower density than Zr+0.5C and Zr+0.67C compositions as a direct consequence of the larger amount of hard phase hindering densification at the lower temperature. After the 1200oC pressureless sintering following the RHP at 1200oC, the RD of Zr+ZrC and 0.5Zr+ZrC compositions increase (which is opposite to the behaviour of Zr+0.5C and Zr+0.67C com-positions) as they do not su er from reaction derived de-densification. After two step RHP, Zr+ZrC and 0.5Zr+ZrC compositions reach a final RD that is higher than the Zr+0.5C and Zr+0.67C compositions, even though after the first RHP at 800oC, they were much less densified. Thus, the absence of de-densification during reaction is able to more than compensate for the increase in hard phase content. 0.5 Reactive Hot Pressing: Low temperature process-ing route Based on the major factors of densification identified earlier, it was investigated whether RHP temperatures could be brought down further while being supplemented by a free sintering step to complete the reaction without de-densification. From a practical standpoint, such a process would allow dense products to be made by hot pressing with low temperature dies and fixtures while carrying out a more economical pressureless sintering at higher temperatures Therefore, Metal-carbide mixtures, Zr+ZrC and Ti+ZrC, are chosen, along with a temperature of 900 C which is above the allotropic phase transformation temperature for Zr around 880oC, thereby utilizing a zirconium phase that is softer than the hexagonal Zr. For completion of reaction, pressureless reaction sintering is done at 1300oC and 1400oC. It is found that after 1400oC reaction sintering, both the compositions reach almost full density and the Ti+ZrC composition also shows a higher hardness (13 vs 10 GPa) than the Zr+ZrC composition, due to the formation of a binary carbide with consequent solid solution hardening. 0.6 Effect of Particle Size on Reactive Hot Pressing During RHP, premature exhaustion of zirconium by reaction can limit densification. One way to have better densification is to slow down the reaction, so that significant amount of densification takes place before the metal zirconium is exhausted. One way to reduce reaction rates is to increase particle size. Larger particles are expected to slow down the reaction without affecting sintering, as densification is controlled by power law creep of Zr which is grain size independent. Because of lack of availability of Zr with different particle sizes, two different graphite particle sizes, i.e. 7-10 m and 50-60 m, were studied and it was shown that after 1200oC RHP, indeed the larger particle size improves densification. 0.7 Modelling of Reactive Hot Pressing Reactive hot pressing is a complicated phenomenon, and to get an insight and also to optimize the parameters, the availability of a computational model is of paramount importance. Keeping that in mind, a model of RHP has been constructed based on four different parts, namely: 1. Densification of zirconium under pressure 2. Reaction of zirconium and carbon 3. The constraint on sintering from a rigid phase and, finally, 4. The volume contraction during reaction. The model uses published data for the 4 steps and shows reasonable qualitative and quantitative agreement with the experimental results. Further experiments are done with the model to optimize the processing parameters. Results from the virtual experiments consolidates our earlier conviction gained from experimental results, by showing zirconium is the principal factor in densification and exhaustion of zirconium coupled with reaction derived de-densification prevent the higher stoichiometric carbide from achieving full densification. It also shows, RHP gives best densification when reaction is 70-80% complete. So two step RHP where the first RHP will only complete the reaction 70-80%, and a final RHP at temperature which will complete the reaction, will possibly be the way to achieve best densification. 0.8 Conclusions The study on RHP of zirconium carbide led to the following conclusions: • Zirconium plays the most crucial role in densification. • Transient phases only play a role when the final stoichiometry of RHPed carbide is close to that of ZrC0:5. • De-densification from reaction prevents higher stoichiometric carbide from reaching full densification. • Two step RHP, with one RHP at lower temperature at which reaction will remain incomplete, and the other at higher temperature to complete the reaction, yields best densification. • For lower stoichiometric carbide (ZrC0:5,ZrC0:67), full densification can be achieved at 1200oC. For higher stoichiometric carbide, even though large amount of densification upward of 90% RD is achieved at 1200oC, full densification will be out of reach. • RHP shows better densification than conventional hot pressing for all stoichiometries.
18

Physicochemical, Electrical and Electrochemical Studies on Titanium Carbide-Based Nanostructures

Kiran, Vankayala January 2013 (has links) (PDF)
Materials for studies related to nanoscience and nanotechnology have gained tremendous attention owing to their unique physical, chemical and electronic properties. Among various anisotropic nanostructures, one dimensional (1D) materials have received immense interest in numerous fields ranging from catalysis to electronics. Imparting multi-functionality to nanostructures is one of the major areas of research in materials science. In this direction, use of nanosized materials in energy systems such as fuel cells has been the subject of focus to achieve improved performance. Tuning the morphology of nanostructures, alloying of catalysts, dispersing catalytic particles onto various supports (carbon nanotubes, carbon nanofibers, graphene, etc.) are some of the ways to address issues related to electrochemical energy systems. It is worth mentioning that highly stable and corrosion resistant electrodes are mandatory as electrochemical cells operate under aggressive environments. Additionally, carbon, which is often used as a support for catalysts, is prone to corrosion and is subsequently implicated in reduced performance due to poor adherence of catalyst particles and loss in electrochemically active area. Hence, there is a quest for the development of stable and durable electrocatalysts / supports for various studies including fuel cells. The present thesis is structured in exploring the multi-functional aspects of titanium carbide (TiC), an early transition metal carbide. TiC, a fascinating material, possesses many favorable properties such as extreme hardness, high melting point, good thermal and electrical conductivity. Its metal-like conductivity and extreme corrosion resistance prompted us to use this material for various electrical and electrochemical studies. The current study explores the versatility of TiC in bulk as well as nanostructured forms, in electrical and electrochemical studies towards sensing, electrocatalytic reactions and active supports. 1D TiC nanowires (TiC-NW) are prepared by simple solvothermal method without use of any template and are characterized using various physico-chemical techniques. The TiC-NW comprise of 1D nanostructures with several µm length and 40 ± 15 nm diameter (figure 1). Electrical properties of individual TiC-NW are probed by fabricating devices using focused ion beam deposition (FIB) technique. The results depict the metallic nature of TiC-NW (figure 2). Figure 1. (a) SEM, (b) TEM and (c) HRTEM images of TiC-NW prepared by solvothermal method. Figure 2. (a) SEM image and (b) I-V characteristics of TiC-NW - based device as a function of temperature. The contact pads are made of Pt. Subsequently, oxidized TiC nanowires are prepared by thermal annealing of TiC-NW, leading to carbon - doped TiO2 nanowires (C-TiO2-NW) (figure 3). Photodetectors are fabricated with isolated C-TiO2-NW and the device is found to respond to visible light (figure 3) radiation with very good responsivity (20.5 A/W) and external quantum efficiency (2.7 X 104). The characteristics are quite comparable with several reported visible light photodetectors based on chalcogenide semiconductors. Figure 3. (a) HRTEM, (b) EDAX, (c) Scanning TEM-DF images of C-TiO2-NW along with (d) Ti (e) O and (f) C mapping. (g) Current – voltage curves of single C-TiO2-NW recorded in dark (black) and in presence of visible light radiation (red) of intensity 57.7 mW/cm2 at 25oC. Inset of (g) shows the SEM image of the device (top) and schematic illustration of fabricated photodetector (bottom). The next chapter deals with the electrochemical performance of TiC demonstrated for studies involving oxygen reduction and borohydride oxidation reactions. Electrochemical oxygen reduction reaction (ORR) reveal that TiC-NW possess high activity for ORR and involves four electron process while it is a two electron reduction for bulk TiC particles (figure 4). The data has been substantiated by density functional theory (DFT) calculations that reveal different modes of adsorption of oxygen on bulk and nanowire morphologies. Stable performance is observed for several hundreds of cycles that confirm the robustness of TiC. The study also demonstrates excellent selectivity of TiC for ORR in presence of methanol and thus cross-over issue can be effectively addressed in direct methanol fuel cells. In the chapter on borohydride oxidation, bare TiC electrode is explored as a catalyst for the oxidation of borohydride. One of the major issues in direct borohydride fuel cells (DBFC) is the hydrolysis of borohydride that happens on almost all electrode materials leading to low efficiency. The present study reveals that TiC is a very good catalyst for borohydride oxidation with little or no hydrolysis of borohydride [figure 5 (a)] under the experimental conditions studied. Further, shape dependant activity of TiC has been studied and fuel cell performance is followed [figure 5 (b)]. Polarization data suggests that the performance of TiC is quite stable under fuel cell experimental conditions. Figure 4. (a) Linear sweep voltammograms for ORR recorded using (i) bulk TiC particles and (ii) TiC-NW in O2-saturated 0.5 M KOH at 1000 rpm. Scan rate used is 0.005 Vs-1. (b) Variation of number of electrons with DC bias. Black dots correspond to TiC bulk particles while red ones represent nanowires. Figure 5. (a) Cyclic voltammograms of borohydride oxidation on TiC coated GC electrode in 1 M NaOH containing 0.1 M NaBH4. Scan rate used is 0.05 Vs-1. (b) Fuel cell polarization data at 70oC for DBFC assembled with (i) bulk TiC particles and (ii) TiC-NW as anode catalysts and 40 wt% Pt/C as cathode. Anolyte is 2.1 M NaBH4 in 2.5 M NaOH, and catholyte is 2.2 M H2O2 in 1.5 M H2SO4. Anode loading is 1.5 mg cm-2 and cathode loading is 2 mg cm-2. The corrosion resistance nature of TiC lends itself amenable to be used as an active support for catalytic particles (Pt and Pd) for small molecules oxidation reactions. In the present study, electro-oxidation of methanol, ethanol and formic acid have been studied. As shown in figure 6 (a), the performance of Pd loaded TiC (Pd-TiC) is found to be higher than that of Pd loaded carbon (Pd-C) suggesting the active role of TiC. The catalytic activities of TiC-based supports are further improved by tuning their morphologies. Figure 6 (c) reveals that the activities are higher in case of Pd-TiC-NW than that of Pd-TiC. Figure 6. (a) Cyclic voltammograms of Pd-TiC and Pd-C for ethanol oxidation, (b) T EM image of Pd-TiC-NW and (c) voltammograms of Pd-TiC-NW in N2-saturated 1 M ethanol in 1 M KOH medium, scan rate used is 0.05 Vs-1. The next aspect explored, is based on the preparation of C-TiO2 and its use as a substrate for surface enhanced Raman spectroscopy (SERS). Carbon doped titanium dioxide is prepared by thermal annealing of TiC. It is observed that the amount of dopant (carbon content) is dependent on the experimental conditions used. SERS studies using 4¬mercaptobenzoic acid (4-MBA) as the analyte, indicates that C-TiO2 [figure 7 (a)] enhances Raman signals based on chemical interactions between the analyte and the substrate. Raman signal intensities can be tuned with the amount of carbon content in C¬TiO2. Enhancement factors are calculated to be (7.7 ± 1.2) x 103 (for 4-MBA) and (1.7 ± 1.2) x 103 (for 4-nitrothiophenol). The SERS substrates are found to be surface renewable using visible light, a simple strategy to re-use the substrate [figure 7 (b)]. The regeneration of SERS substrates is based on self cleaning action of TiO2 that produces highly reactive oxygen containing radicals known to degrade the molecules adsorbed on TiO2. Thus, the versatility of TiC has been demonstrated with various studies. In addition to using TiC-based materials, nanoparticles of Rh, Ir and Rh-Ir alloy structures have also been used for borohydride oxidation reaction. This is explained in the last section. In Appendix-I, preliminary studies on the preparation of TiC-polyaniline (PANI) composites using liquid-liquid interfacial polymerization is explained. Raman spectroscopy results suggest that the presence of TiC-NW makes PANI to assume preferential orientation in the polaronic (conducting) form. Appendix-II discusses the role of TiC-NW as a fluorescence quencher for CdS semiconductor nanoparticles.
19

2D MATERIALS FOR GAS-SENSING APPLICATIONS

Yen-yu Chen (11036556) 01 September 2021 (has links)
<div> <div> <div> <p> </p><div> <div> <div> <div> <div> <div> <p> </p><div> <div> <div> <p>Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) and transition metal carbides/nitrides (MXenes), have been recently receiving attention for gas sensing applications due to their high specific area and rich surface functionalities. However, using pristine 2D materials for gas-sensing applications presents some drawbacks, including high operation temperatures, low gas response, and poor selectivity, limiting their practical sensing applications. Moreover, one of the long-standing challenges of MXenes is their poor stability against hydration and oxidation in a humid environment, which negatively influences their long- term storage and applications. Many studies have reported that the sensitivity and selectivity of 2D materials can be improved by surface functionalization and hybridization with other materials.</p><p>In this work, the effects of surface functionalization and/or hybridization of these two materials classes (TMDCs and MXenes) on their gas sensing performance have been investigated. In one of the lines of research, 2D MoS2 nanoflakes were functionalized with Au nanoparticles as a sensing material, providing a performance enhancement towards sensing of volatile organic compounds (VOCs) at room temperature. Next, a nanocomposite film composed of exfoliated MoS2, single-walled carbon nanotubes, and Cu(I)−tris(mercaptoimidazolyl)borate complexes was the sensing material used for the design of a chemiresistive sensor for the selective detection of ethylene (C2H4). Moreover, the hybridization of MXene (Ti3C2Tx) and TMDC (WSe2) as gas-sensing materials was also proposed. The Ti3C2Tx/WSe2 hybrid sensor reveals high sensitivity, good selectivity, low noise level, and ultrafast response/recovery times for the detection of various VOCs. Lastly, we demonstrated a surface functionalization strategy for Ti3C2Tx with fluoroalkylsilane (FOTS) molecules, providing a superhydrophobic surface, mechanical/environmental stability, and excellent sensing performance. The strategies presented here can be an effective solution for not only improving materials' stability, but also enhancing sensor performance, shedding light on the development of next-generation field-deployable sensors.</p> </div> </div> </div><div><div><div><div><div><div> </div> </div> </div> </div> </div> </div></div></div></div> </div> </div> </div></div></div></div><div><div><div> </div> </div> </div>

Page generated in 0.0894 seconds