• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • Tagged with
  • 15
  • 15
  • 15
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Toughness enhancement in transition metal nitrides

Sangiovanni, Davide Giuseppe January 2011 (has links)
Toughness enhancements can be induced in cubic-B1 transition metal nitride alloys by an increased occupation of the d-t2g metallic states. In this Licentiate Thesis I use density functional theory to investigate the mechanical properties of TiN and VN and of the ternaries obtained by replacing 50% of Ti and V atoms with M (M = V, Nb, Ta, Mo, and W) to form ordered structures with minimum number of inter-metallic bonds. The calculated values of elastic constants and moduli show that ternary alloys with high valence electron concentrations (M = Mo and W), have large reductions in shear moduli and C44 elastic constants, while retaining the typically high stiffness and incompressibility of ceramic materials. These results point to significantly improved ductility in the ternary compounds. This important combination of strength and ductility, which equates to material toughness, stems from alloying with valence electron richer dmetals. The increased valence electron concentration strengthens metal–metal bonds by filling metallic d-t2g states, and leads to the formation of a layered electronic configuration upon shearing. Comprehensive electronic structure calculations demonstrate that in these crystals, stronger Ti/V – N and weaker M – N bonds are formed as the valence electron concentration is increased. This phenomenon ultimately enhances ductility by promoting dislocation glide through the activation of an easy slip system.
12

Thermodynamic investigations of transition metal systems containing coabon and nitrogen

Teng, Lidong January 2004 (has links)
In view of the important applications of carbides and carbo-nitrides of transition metals in the heat-resistant and hard materials industries, the thermodynamic activities of Cr and Mn in the Cr-C, Fe-Cr-C, Mn-Ni-C and Mn-Ni-C-N systems have been studied in the present work by the use of the galvanic cell technique. CaF2single crystals were used as the solid electrolyte. The phase relationships in selected regions of the systems in question were investigated by the use of the equilibration technique. The phase compositions and microstructures of the alloys were analysed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). In the Cr-C system, the Gibbs energy of formation of Cr3C2 were obtained from ElectroMotive Force (EMF) measurements conducted in the temperature range 950-1150 K. The values of the enthalpy of formation of Cr3C2 were evaluated by the third-law method. The ground-state energy of the hypothetic end-member compound CrC3, in the bcc structure at 0 K, was calculated by use of the Ab-initio method. Based on the obtained results the Cr-C system was reassessed by use of the CALPHAD approach. In the Fe-Cr-C system, 16 different alloys were quenched at 1223 K and their equilibrium phases identified by XRD. The experimental results show that the substitution of Cr by Fe in the (Cr,Fe)7C3 carbide changes the lattice parameters of the phase. A slight decrease of the lattice parameters with an increase in the Fe content was established. The lattice parameters of the γ-phase in the Fe-Cr solid solution did also show a decrease with an increase of the Fe content. The activities of chromium in Fe-Cr-C alloys were investigated in the temperature range 940-1155 K. The activity of chromium decreases with an increase in the Fe content when the ratio of C/(Cr+C) was constant. It was also established that the activity of chromium decreases with an increase of the carbon content when the iron content was constant. The experimental results obtained were compared with the data calculated by use of the Thermo-Calc software. In the Mn-Ni-C system the phase relationships were investigated at 1073 K as well as at 1223 K. The experimental results obtained showed that the site fraction of Ni in the metallic sublattice of the carbides M23C6, M7C3 and M5C2 (M=Mn and Ni) was quite low (approximately 2~3 percent). The activities of manganese in Mn-Ni-C alloys were investigated in the temperature range 940-1165 K. The three-phase region γ/M7C3/graphite was partly constructed at 1073 K. In the Mn-Ni-C-N system, nitrogen was introduced into Mn-Ni-C alloys by equilibrating with N2 gas. It was established that the solubility of nitrogen in the investigated alloys was effected by the carbon content, and that a (Mn,Ni)4(N,C) compound was formed in the nitrided alloys. EMF measurements were performed on Mn-Ni-C-N alloys in the temperature interval 940-1127 K. The addition of nitrogen to Mn-Ni-C alloys was found to decrease the activity of manganese. The negative effect of nitrogen on the activity of manganese was found to decrease as the carbon content increased. Keywords: Thermodynamic activity; Galvanic cell technique; Transition metal carbides; Transition metal nitrides; Phase equilibrium; Thermodynamics; Differential thermal analysis; Scanning electron microscopy; Transmission electron microscopy; Ab-initio calculations; CALPHAD approach;
13

Atomistic simulation and experimental studies of transition metal systems involving carbon and nitrogen

Xie, Jiaying January 2006 (has links)
The present work was initiated to investigate the stability, structural and thermodynamic properties of transition metal carbides, nitrides and carbo-nitrides by atomistic simulations and experimentations. The interatomic pair potentials of Cr-Cr, Mn-Mn, Fe-Fe, C-C, Cr-C, Mn-C, Fe-C, Cr-Fe, Cr-N and Mn-N were inverted by the lattice inversion method and ab initio cohesive energies, and then employed to investigate the properties of Cr-, Mn- and Fe-carbides by atomistic simulations in this work. For the binary M7C3 carbide, the structural properties of M7C3 (M = Cr, Mn, Fe) were investigated by atomistic simulations. The results show that the stable structure for these compounds is hexagonal structure with P63mc space group. The cohesive energy of M7C3 calculated in this work indicates that the stability of carbides decreases with the increasing in metal atomic number. Further, the vibrational entropy of Cr7C3 was calculated at different temperatures and compared with the entropy obtained by experimentations. The comparison demonstrates that the main contribution to the entropy is made by the vibrational entropy. For the binary τ-carbides, the structural properties of Cr23C6 and Mn23C6, as well as the vibrational entropy of Cr23C6 were computed. Further, the site preference of ternary element Fe among 4a, 8c, 32f and 48h symmetry sites in Cr23-xFexC6 was studied. It has been seen that Fe atoms would firstly occupy 4a sites and then 8c sites. The lattice constant and stability of Cr23-xFexC6 were also computed with different Fe content. In order to understand the relative stability of the transition metal carbides and nitrides, the standard formation Gibbs energies of carbides and nitrides for Cr, Mn and Fe were compared. The order of carbon and nitrogen affinities for Cr, Mn and Fe was further clarified by the comparison of the interatomic pair potentials among Cr-C, Mn-C, Fe-C, Cr-N and Mn-N. It was found that Cr-N interaction was very strong in comparison with other binary interactions above and consequently, nitrogen addition would lead to a strong decrease in the thermodynamic activity of chromium in Cr-containing alloys. This was confirmed by the investigations of thermodynamic activities of Cr in the Fe-Cr-N and Fe-Cr-C-N alloys. The activities were measured in the temperature range 973-1173 K by solid-state galvanic cell method involving CaF2 solid electrolyte under the purified N2 gas. In addition, the analysis of nitrogen content and phase relationships in the Fe-Cr-N and Fe-Cr-C-N alloys equilibrated at 1173 K were carried out by inert-gas fusion thermal conductivity method, X-ray diffraction and scanning electron microscopy technique. The experimental results show that the solubility of nitrogen in the alloys decreases with the decreasing chromium content, as well as the increasing temperature. The addition of nitrogen to the alloys was found to have a strong negative impact on the Cr activity in Fe-Cr-N and Fe-Cr-C-N systems. / QC 20100929
14

Growth, Optimization, and Characterization of Transition Metal Nitrides and Transition Metal Oxides for Electronic and Optical Applications

Biegler, Zachary J. January 2019 (has links)
No description available.
15

Investigation of self-heating and macroscopic built-in polarization effects on the performance of III-V nitride devices

Venkatachalam, Anusha 06 July 2009 (has links)
The effect of hot phonons and the influence of macroscopic polarization-induced built-in fields on the performance of III-V nitride devices are investigated. Self-heating due to hot phonons is analyzed in AlGaN/GaN high electron mobility transistors (HEMTs). Thermal transport by acoustic phonons in the diffusive limit is modeled using a two-dimensional lattice heat equation. The effect of macroscopic polarization charges on the operation of blue and green InGaN-based quantum well structures is presented. To characterize these structures, the electronic part of the two-dimensional quantum well laser simulator MINILASE is extended to include nitride bandstructure and material models. A six-band k.p theory for strained wurtzite materials is used to compute the valence subbands. Spontaneous and piezoelectric polarization charges at the interfaces are included in the calculations, and their effects on the device performance are described. Additionally, k.p Hamiltonian for crystal growth directions that minimize the polarization-induced built-in fields are modeled, and valence band dispersion for the non-polar and semi-polar planes are also calculated. Finally, a design parameter subspace is explored to suggest epitaxial layer structures which maximize gain spectral density at a target wavelength for green InxGa1-xN-based single quantum well active regions. The dependence of the fundamental optical transition energy on the thickness and composition of barriers and wells is discussed, and the sensitivity of gain spectral density to design parameters, including the choice of buffer layer material, is investigated.

Page generated in 0.0884 seconds