Spelling suggestions: "subject:"atransition intersubband"" "subject:"atransition interbandes""
1 |
Structures de couplage optique originales pour les détecteurs infrarouge à puits quantiquesAntoni, Thomas 23 June 2009 (has links) (PDF)
L'étude du comportement électromagnétique des détecteurs infrarouge à puits quantiques (QWIPs et QCDs) est longtemps resté insuffisant, le développement de ces détecteurs depuis une dizaine d'années s'étant surtout orienté sur l'optimisation du transport dans la couche active. Ce n'est que très récemment qu'un formalisme adéquat au traitement du champ proche a été mis en œuvre pour modéliser ces réseaux. L'étude du réseau de couplage sur ces structures peut désormais bénéficier des travaux de recherche récents sur la plasmonique et les métamatériaux. L'enjeu de ces recherches est de dépasser la simple fonction de couplage et d'imaginer des structures optiques assurant des fonctions supplémentaires. Nous démontrons notamment la possibilité de discriminer la polarisation de l'émission corps noir avec un réseau unidimensionnel. En se basant sur les propriétés de dispersion des interfaces métal/diélectrique structurées, présentant une bande interdite photonique, nous avons réussi à concentrer l'intégralité du signal incident dans une distance inférieure au quart de la longueur d'onde. Nous proposons d'utiliser cette structure sur des pixels implantés pour augmenter le rapport signal à bruit. Nous proposons trois solutions technologiques de contact supérieur permettant de remplir aux mieux son double rôle : électrique et optique. Nous nous intéressons également à la modification du photocourant due à la présence d'impuretés dans les puits. Ces travaux devraient permettre à la fois une optimisation plus efficace du couplage électromagnétique ainsi qu'à plus long terme, la mise en œuvre de nouvelles fonctionnalités optiques intégrées au pixel.
|
2 |
Etude de lasers à cascade quantique par spectroscopie térahertz dans le domaine temporelOustinov, Dimitri 24 March 2011 (has links) (PDF)
Ce travail présente une étude de lasers à cascade quantique à l'aide de la spectroscopie THz dans le domaine temporel. Cette technique expérimentale consiste en la mesure de champs électriques THz transmis par un échantillon, permettant d'étudier des effets à la fois statiques et dynamiques dans les semiconducteurs. Les lasers à cascade quantique THz sont des structures multipuits considérées comme des dispositifs prometteurs pour combler le manque de sources dans l'infrarouge lointain. Dans une première étude, statique, nous avons mesuré le spectre du gain de différents échantillons et avons pu identifier les transitions électroniques intersousbandes responsables du gain et des pertes. Nous avons aussi constaté un rétrécissement du spectre du gain dans ces lasers dont nous expliquons l'origine. Dans une seconde étude, dynamique, nous avons effectué une commutation utra-rapide du gain dans un laser à cascade quantique afin d'exploiter son régime transitoire pour amplifier une onde THz. Le laser présente alors un gain élevé sans être limité aux pertes totales au-dessus du seuil. Finalement, une troisième étude dynamique nous permet de mesurer l'émission cohérente d'un laser THz par spectroscopie dans le domaine temporel. Un contrôle électrique du déclenchement d'un laser au-dessus du seuil, et un amorçage de l'émission par une impulsion THz à spectre large nous permet de contrôler la phase du champ électrique émis par le laser.
|
Page generated in 0.1024 seconds