• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 20
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 160
  • 160
  • 160
  • 38
  • 22
  • 18
  • 17
  • 16
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Nitrogen-based nickel and palladium complexes as catalysts for olefin oligomerization, Heck and Suzuki coupling reactions

Nelana, Simphiwe Maurice 31 March 2009 (has links)
Ph.D. / This thesis deals with the synthesis of nitrogen-donor compounds and their reaction with metal ions. The first type of nitrogen-donor compounds are the unconjugated diimines (N,N´-bis(diphenylmethylene)ethylenediamine (L1) and (N,N´-bis(diphenylmethylene)propylenediamine (L2). Compounds L1 and L2 were reacted with [NiBr2(DME)] or [NiCl2·6H2O] to form complexes (2.1a), (2.2a), (2.3a) and (2.4a). These nickel complexes were characterized by IR spectroscopy, elemental analysis and mass spectrometry. When the complexes were left in chloroform for prolonged periods, hydrolysis of the diimine ligand took place, leading to the formation of nickel complexes 2.1b, 2.2b, 2.3b and 2.4b. The identity of the hydrolysed nickel complexes 2.1b and 2.2b was confirmed by single crystal X-ray crystallography. Complex 2.1b crystallised in the P21/n space group, whilst 2.2b crystallised in the P-1 space group. Compounds L1 and L2 were also reacted with [PdClMe(MeCN)2] to form the palladium complexes (3.1) and (3.2). The palladium complexes were characterized by NMR spectroscopy, elemental analysis and single crystal X-ray crystallography. Attempts to recrystallize 3.1 from a dichloromethane solution led to the formation of 3.1a. Both complexes 3.1a and 3.2 crystallised in the P21/n space group. Complexes 3.1 and 3.2 were tested as catalysts for the Heck coupling reaction of iodobenzene with methyl acrylate or butyl acrylate at 80 C. The products from the coupling reactions were characterized by GC and NMR spectroscopy. These complexes were found to be highly active with 100% conversions observed in some instances. The second type of ligands that were prepared are the benzoylpyrazolyl compounds, (3,5-dimethylpyrazol-1-yl)phenylmethanone (C1), (3,5-ditertiarybutylpyrazol-1-yl)phenylmethanone (C2), (3,5-dimethylpyrazol-1-yl)-o-toluoylmethanone (C3), (3,5-ditertiarybutylpyrazol-1-yl)-o-toluoylmethanone (C4), (2-chlorophenyl)-(3,5-dimethylpyrazol-1-yl)methanone (C5), (2-chlorophenyl)-(3,5-ditertiarybutylpyrazol-1-yl)methanone (C6), (2-flourophenyl)-(3,5-dimethylpyrazol-1-yl)methanone (C7), (2-flourophenyl)-(3,5-ditertiarybutylpyrazol-1-yl)methanone (C8). These compounds were fully characterized using NMR spectroscopy, IR spectroscopy and elemental analysis. Compounds C1, C3, C5 and C7 were reacted with [NiBr2(DME)] to form nickel complexes (4.31-4.34). These nickel complexes were found to be insoluble in all common organic solvents and hence were characterized only by IR spectroscopy and elemental analysis. Compounds C1-C8 were also reacted with [PdCl2(MeCN)2] to form palladium complexes (4.35-4.42). Complexes 4.35-4.42 were characterized using NMR spectroscopy, IR spectroscopy, elemental analysis and in selected cases single crystal X-ray crystallography. Complex 4.39 crystallised in the C2/n space group and complex 4.42 crystallised in the P21/n space group. Attempts to recrystallize 4.37a led to the formation of 4.37b, which contains both 3,5-dimethylpyrazol-1-yl)-o-toluoylmethanone and 3,5-dimethylpyrazole as ligands. Complex 4.37b was confirmed by NMR spectroscopy and single crystal X-ray crystallography. Complex 4.37b crystallised in the Pbca space group. The formation of 4.37b is attributed to hydrolysis of 3,5-dimethylpyrazol-1-yl)-o-toluoylmethanone ligand in 4.37a due to the presence of adventitious water in the solvent. The palladium complexes (4.35-4.42) were tested as catalysts for the Heck coupling reaction of iodobenzene with butyl acrylate and also for the Suzuki coupling reaction of iodobenzene with phenylboronic acid or 4-chlorophenylboronic acid. In these reactions, complexes 4.35-4.42 were found to be highly active at 120 C. The pyrazolyl nickel and palladium complexes were further tested as catalysts in ethylene oligomerization reactions using EtAlCl2 as the co-catalyst. The nickel complexes were found to be the most active reaching TONs of 10.8105 g mol-1 h-1. The palladium analogues only gave TONs of up to 3.9105 g mol-1 h-1. The oligomers were characterized by GC and NMR spectroscopy and were found to be in the C10-C16 range, with C16 the most abundant olefin.
132

Nitrogen-donor nickel and palladium complexes as olefin transformation catalysts

Ojwach, Stephen Otieno 30 April 2009 (has links)
Ph.D. / Compounds, 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L1) and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (L2) were prepared by phase transfer alkylation of 2,6-bis(bromomethyl)pyridine with two mole equivalents of the appropriate pyrazole. Ligands L1 and L2 reacted with either [PdCl2(NCMe)2] or [PdClMe(COD)] to form mononuclear palladium complexes [(PdCl2(L1)] (1), [(PdClMe(L1)] (2), [(PdCl2(L2)] (3), [(PdClMe(L2)] (4). All new compounds prepared were characterised by a combination of 1H NMR, 13C NMR spectroscopy and microanalyses. The coordination of L2 in a bidentate fashion through the pyridine nitrogen atom and one pyrazolyl nitrogen atom has been confirmed by single crystal X-ray crystallography of complex 3. Reactions of 1, 2 and 3 with the halide abstractor NaBAr4 (Ar = 3,5-(CF3)2C6H3) led to the formation of the stable tridentate cationic species [(PdCl(L1)]BAr4 (5), [(PdMe(L1)]BAr4 (6) and [(PdCl(L2)]BAr4 (7) respectively. Tridentate coordination of L1 and L2 in the cationic complexes has also been confirmed by single X-ray crystallography of complexes 5 and 6. The analogous carbonyl linker cationic species, [Pd{(3,5-Me2pz-CO)2-py}Cl]+ (9) and [Pd{(3,5-tBu2pz-CO)2-py}Cl]+ (10), prepared by halide abstraction from [Pd{(3,5-Me2pz-CO)2-py}Cl2] and [Pd{(3,5-tBu2pz-CO)2-py}Cl2] with NaBAr4, were however less stable. While cationic complexes 5-7 showed indefinite stability in solution, 9 and 10 had t1/2 of 14 and 2 days respectively. Attempts to crystallise 1 and 3 from the mother liquor resulted in the isolation of the salts [PdCl(L1)]2[Pd2Cl6] (11) and [PdCl(L2)]2[Pd2Cl6] (12). Although when complexes 1-4 xviii were reacted with modified methylaluminoxane (MMAO) or NaBAr4, no active catalysts for ethylene oligomerisation or polymerisation were formed, activation with silver triflate (AgOTf) produced active catalysts that oligomerised and polymerised phenylacetylene to a mixture of cis-transoidal and trans-cisoidal polyphenylacetylene. Compounds 2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L3) and 2-(3,5-di-tert-butylpyrazol-1-ylmethyl)pyridine (L4) were prepared by phase transfer alkylation of 2-picolylchloride hydrochloride with one mole equivalent of the appropriate pyrazole. Compounds 2-(3,5-bis-trifluoromethyl-pyrazol-1-ylmethyl)-6-(3,5-dimethyl-pyrazol-1-ylmethyl)-pyridine (L5) and 2-(3,5-dimethyl-pyrazol-1-ylmethyl)-6-phenoxymethyl-pyridine (L6) were isolated in good yields by reacting (2-chloromethyl-6-3,5-dimethylpyrazol-1-ylmethyl)pyridine with an equivalent amount of potassium salt of 3,5-bis(trifluoromethyl)pyrazolate and potassium phenolate respectively. L3-L6 react with either [Pd(NCMe)2Cl2] or [PdClMe(COD)] to give mononuclear palladium complexes 13-18 of the general formulae [PdCl2(L)] or [PdClMe(L)] where L = is the bidentate ligands L3, L4, L5 and L6 respectively. Single crystal X-ray crystallography of complexes 13, 15 and 16 has been used to confirm the solid state geometry of the complexes. In attempts to generate active olefin oligomerisation catalysts, the chloromethyl Pd(II) complexes 14 and 16 were reacted with the halide abstractor NaBAr4 in the presence of stabilising solvents (i.e Et2O or NCMe) but no catalytic activities were observed. Decomposition was evident as observed from the deposition of palladium black in experiments using Et2O. In experiments where NCMe was used as the stabilising solvent, the formation of cationic species stabilised by NCMe was evident from 1H NMR analyses. Reaction of complex 14 with NaBAr4 on a preparative scale in a mixture of CH2Cl2 and NCMe solvent gave the cationic complex [[PdMeNCMe(L3)]BAr4 (19) in good yields. Complex 17 reacted with NABAr4 to give tridentate cationic species [[PdMe(L5)]BAr4 (20) which is inactive towards ethylene oligomerisation or polymerisation reactions. The tridentate coordination of L5 in 20 has also been established by single crystal X-ray structure of 20. Catalysts generated from 18 and 19 catalysed ethylene polymerisation at high pressures to branched polyethylene; albeit with very low activity. The Choromethyl palladium complex 14 reacted with sulfur dioxide to form complex 21. The nature of the product has been established by 1H NMR, 13C NMR and mass spectrometry to be an insertion product of SO2 into the Pd-Me bond of 14. Compounds L1-L4 reacted with the nickel salts NiCl2 or NiBr2 in a 1:1 mole ratio to give the nickel complexes [NiCl2(L1)] (22), [NiBr2(L1)] (23), [NiCl2(L2)] (24), and [NiBr2(L2)] (25), [Ni2(μ2-Cl)2Cl2(L3)2] (26), [Ni2(μ2-Br)2Br2(L3)2] (27), [NiCl2(L4)] (29) and [NiBr2(L4)] (30) in good yields. Reaction of L3 with NiBr2 in a 2:1 mole gave the octahedral complex [NiBr2(L4)2] (28) in good yields. Complexes 22-30 were characterised by a combination micro-analyses, mass spectrometry and single crystal X-ray analyses for 27 and 30. No NMR data were acquired because of the paramagnetic nature of the complexes. When complexes 22-30 were activated with EtAlCl2, highly active olefin oligomerisation catalysts were formed. In the ethylene oligomeristion reactions, three oligomers: C11, C14 xx and C16 were identified as the major products. Selectivityof 40% towards α-olefins were generally obtained. In general catalysts that contain the bidentate ligands L3 and L4 were more active than those that contain the tridentate ligands L1 and L2. Dichloride complexes exhibited relatively higher catalytic activities than their dibromide analogues. Turn over numbers (TON) for oligomer formation showed high dependence on ethylene concentration. A Lineweaver-Burk analysis of reactions catalysed by 22 and 26 showed TON saturation of 28 393 kg oligomer/mol Ni.h and 19 000 kg oligomer/mol Ni.h respectively. Catalysts generated from complexes 22-30 also catalysed oligomerisation of the higher olefins, 1-pentene, 1-hexene and 1-heptene and displayed good catalytic activities. Only two products C12 and C15 were obtained in the 1-pentene oligomerisation reactions. The 1-hexene reactions also gave two products, C12 and C18, while 1-heptene oligomerisation reactions gave predominantly C14 oligomers. Five benzoazoles were used to prepare a series of palladium complexes that were invesitigated as Heck coupling catalysts. The compounds 2-pyridin-2-yl-1H-benzoimidazole (L7) and 2-pyridin-2-yl-benzothiazole (L8) were prepared following literature procedures. The new ligands 2-(4-tert-butylpyridin-2-yl)-benzooxazole (L9) and 2-(4-tert-butyl-pyridin-2-yl)-benzothiazole (L10) were prepared by ring closure of aminophenol and aminothiophenol with tert-butyl picolinic acid respectively. The ligand 6-tert-Butyl-2-(4-tert-butyl-pyridin-2-yl)-benzothiazole (L11) was prepared by intramolecular cyclisation under basic conditions is described. Reactions of L7-L11 with either [Pd(NCMe)2Cl2] or [Pd(COD)MeCl] afforded the corresponding mononuclear palladium complexes [PdClMe(L7)] (31), [PdClMe(L8)] (32), [PdCl2(L9)] (33), [PdMeCl(L9)] (34), [PdCl2(L10)] (5), [PdMeCl(L10)] (36) and [PdMeCl(L11)] (37) as xxi confirmed by mass spectrometry and micro-analyses. The palladium complexes 31-37 were efficient Heck coupling catalysts for the reaction of iodobenzene with butylacrylate under mild conditions and showed good stability.
133

Phosphorescent Emissions of Coinage Metal-Phosphine Complexes: Theory and Photophysics

Sinha, Pankaj 12 1900 (has links)
The major topics discussed are all relevant to the bright phosphorescent emissions of coinage metal complexes (Cu(I), Ag(I) and Au(I)) with an explanation of the theoretical background, computational results and ongoing work on the application in materials and optoelectronic devices. Density functional computations have been performed on the majority of the discussed complexes and determined that the most significant distortion that occurs in Au(I)-phosphine complexes is a near and beyond a T-shape within the P-Au-P angle when the complexes are photoexcited to the lowest phosphorescent excited state. The large distortion is experimentally qualified with the large Stokes' shift that occurs between the excitation and emission spectra and can be as large as 18 000 cm-1 for the neutral Au(I) complexes. The excited state distortion has been thoroughly investigated and it is determined that not only is it pertinent to the efficient luminescence but also for the tunability in the emission. The factors that affect tunability have been determined to be electronics, sterics, rigidity of solution and temperature. The luminescent shifts determined from varying these parameters have been described systematically and have revealed emission colors that span the entire visible spectrum. These astounding features that have been discovered within studies of coinage metal phosphorescent complexes are an asset to applications ranging from materials development to electronics.
134

Reduction Pathways in Cyclopentadienyl Rhenium Dicarbonyl Dibromide Deriviatives and Indenyl Rhenium Tricarbonyl: Synthesis, Structure, and Reactivity of Anionic Cyclopentadienyl Rhenium Complexes. Ring Attack vs. Metal-Halogen Exchange

Lee, Sang Woo, 1952- 12 1900 (has links)
The reactions of diagonal and lateral Cp'Re(CO)2Br2 (where Cp' = n5-C5H5, n5-C5Me5) and (n5-CgH7)Re(CO)3 with reducing agents have been examined. Hydride reduction at -78 °C is observed to occur at the Cp ring in both CpRe(CO)2Br2 isomers, affording a thermally unstable [(n4 -C5Hg)Re(CO)2Br2]- complex. The product of hydride ring attack has been characterized by low-temperature IR and 1H NMR measurements in addition to 13C NOE and heteronuclear 2D NMR measurements. Reaction of lateral CpRe(CO)2Br2 with either MeLi or PhLi affords both Cp-ring attack and metalhalogen exchange, [CpRe(CO)2Br]- (1) while t-BuLi reacts exclusively via metal-halogen exchange. diag-CpRe(CO)2Br2 reacts with the above lithium reagents to yield the same metal-halogen exchange anion. Analogous reactions using diag- and lat-Cp*Re(CO)2Br2 (where Cp* = n5-CgMe5) afford only the corresponding rhenium metal-halogen exchange anion, [Cp*Re(CO)2Br] (2). The molecular structures of 1-[Li/15-Crown-5] and 2-PPP were established by X-ray crystallography. 1-[Li/15-Crown-5] crystallizes in the monoclinic space group P21 with a = 10.860(4) A, b = 13.116(5) A, c = 7.417(3) A, B = 105.26(3)0, V = 1018.7(3) A3 , and Z = 2. 2-PPP crystallizes in the orthorhombic space group Pbca with a = 20.646(5) A, b = 17.690(5) A, c = 17.553(3) A, and z = 8. Solution FT-IR studies of 2 in THF reveal the presence of only solvent-separated ion pairs when the gegencation is Li+, K+, or PPP+ from -70 °C to room temperature. 2-Na at room temperature displays a 39:61 mixture of carbonyl oxygen-sodium and solvent-separated ion pairs, respectively. These ion pairs reveals a reversible temperature-dependent equilibrium. The equilibrium constant has been determined by IR band shape analysis over the temperature range -70 °C to room temperature and values of AH and AS are reported. The reaction of the ring-attacked complex, diag-[(n4-C5H6)Re(CO)2Br2]- with PPh3, P(OPh)3, or Me3CNC leads to the formation of the CpRe(CO)2L. Treatment of [Cp'Re(CO)2Br]- with methyltriflate, TFA, and magic ethyl yields the corresponding diag-Cp'Re(CO)2Br(R) (R = CH3, H, C2H5) complexes based on in situ IR analysis. All of these functionalized complexes decomposed in solution over a period of days to give Cp'Re(CO)3 as the only isolable product (20-30 %). The reaction of the [Cp,Re(C0)2Br]- with Bu3SnH at 60 °C leads to the formation of diag-Cp'Re(CO)2(SnBu3)2, which was also synthesized independently by the deprotonation of diag-Cp'Re(CO)2H2 with Et3N in the presence of Bu3SnBr at room temperature. The reaction of Cp'Re(CO)2Br2 with Bu3SnH at room temperature was discovered to afford the dihydride in excellent yield and, thus represents an improved synthetic route for the synthesis of diag-Cp'Re(CO)2H2. The hydride reduction of (n5-CgH7)Re(CO)3 at room temperature leads to the immediate formation of [(n5-CgH7)Re(CO)2H]- complex, which has been characterized by IR analysis and 1H and 13C NMR spectroscopy.
135

Systematic syntheses of iron-triad (Fe,Ru,Os) tetranuclear clusters by redox condensation reactions of [Ru(3);CO(11)) and [Os(3);CO(11)] trinuclear carbonylates; co-crystallization of ruthenium-osmium clusters /

Siriwardane, Upali January 1985 (has links)
No description available.
136

Systèmes nanocristallins Sm1-s(Fe,Mo)5+2s : étude des propriétés structurales et magnétiques / Structural and magnetic investigation on nanocristalline Sm1-s(Fe,Mo)5+2s compounds

Khazzan, Salwa 20 December 2010 (has links)
Ce travail se situe dans le cadre général de l'étude des nanostructures obtenues par mécanosynthèse qui font l'objet d'intenses recherches dans le domaine des aimants permanents de nouvelle génération et de l'enregistrement magnétique. L'objectif de l'étude du système Sm-Fe-Mo est de suivre l'effet de la substitut ion partielle du fer par le molybdène ainsi que l'effet de l'insertion d'un élément léger tel que le carbone sur leurs propriétés magnétiques afin d'établir une corrélation entre leur microstructure et leurs propriétés magnétiques. Nous avons montré que la mise en solution du molybdène est bien possible. La phase 2/17 ainsi obtenue possède une température de Curie (Tc) égale à 434K. Avec le taux de substitution croissant, on découvre un changement de phase vers une phase monoclinique 3/29 du type Nd3(Fe,Ti)29 de Tc égale à 459K, puis vers une structure quadratique (1/12 de Tc=551K). Ces phases d'équilibre, obtenues à haute température de recuit, dérivent toutes de la structure CaCu5. Elles correspondent à la substitution ordonnée des atomes de Sm par des haltères de Fe. A plus basse température de recuit, on découvre l'apparition de nouvelles phases, ne figurant pas dans les diagrammes d'équilibre. Nous avons déterminé les stchiométries respectives de ces phases par analyse des diagrammes de diffraction des RX par la technique de Rietveld. Ces phases hexagonales possèdent des propriétés magnétiques plus intéressantes que les phases d'équilibre. L'insertion du carbone change drastiquement les propriétés magnétiques des différentes phases / One important family among the hard magnetic rare-earth-transition-metal is derived from Sm-Fe-Mo CaCu5-type structure. The aim of the study of the system Sm-Fe-Mo is to follow the effect of partial substitution of Fe by Mo and the effect of the insertion of a light element such as carbon on their magnetic properties in order to correlate their microstructure and their magnetic properties.The ordered substitution of Sm atom by a dumbbell pair Fe-Fe leads to the equilibrium phases 2/17, 3/29 and 1/12 structure. With Mo content increase, a phase transformation is observed. The Curie temperatures of these phases are respectively 434, 459 and 551K. New phases are discovered to appear at lower annealing temperatures. Owing to Rietveld refinement, these phases crystallize in the P6/mmm structure. Carbon insertion improves drastically magnetic properties. The carbides of the new out of equilibrium phases are particularly promising for permanent magnet applications
137

Magnetic properties of transition metal compounds and superlattices

Broddefalk, Arvid January 2000 (has links)
<p>Magnetic properties of selected compounds and superlattices have been experimentally studied using SQUID (superconducting quantum interference device) and VSM (vibrating sample magnetometer) magnetometry, neutron diffraction and Mössbauer spectroscopy measurements combined with theoretical <i>ab initio</i> calculations. </p><p>The magnetic compounds (Fe<sub>1-x</sub>M<sub>x</sub>)<sub>3</sub>P, M=Co or Mn have been studied extensively. It was found that Co can substitute Fe up to <i>x</i>=0.37. Increasing the Co content leads to a reduction of the Curie temperature and the magnetic moment per metal atom. Mn can substitute Fe up to<i> x</i>=0.25 while Fe can be substituted into Mn<sub>3</sub>P to 1-<i>x</i>=0.33. On the iron rich side, the drop in Curie temperature and magnetic moment when increasing the Mn content is more rapid than for Co substitution. On the manganese rich side an antiferromagnetic arrangement with small magnetic moments was found. </p><p>The interlayer exchange coupling and the magnetocrystalline anisotropy energy of Fe/V superlattices were studied. The coupling strength was found to vary with the thickness of the iron layers. To describe the in-plane four-fold anisotropy, the inclusion of surface terms proved necessary. </p><p>The in-plane four fold anisotropy was also studied in a series of Fe/Co superlattices, where the thickness of the Co layers was kept thin so that the bcc structure could be stabilized. Only for samples with a large amount of iron, the easy axis was found to be [100]. The easy axis of bulk bcc Co was therefor suggested to be [111]. </p>
138

Magnetic properties of transition metal compounds and superlattices

Broddefalk, Arvid January 2000 (has links)
Magnetic properties of selected compounds and superlattices have been experimentally studied using SQUID (superconducting quantum interference device) and VSM (vibrating sample magnetometer) magnetometry, neutron diffraction and Mössbauer spectroscopy measurements combined with theoretical ab initio calculations. The magnetic compounds (Fe1-xMx)3P, M=Co or Mn have been studied extensively. It was found that Co can substitute Fe up to x=0.37. Increasing the Co content leads to a reduction of the Curie temperature and the magnetic moment per metal atom. Mn can substitute Fe up to x=0.25 while Fe can be substituted into Mn3P to 1-x=0.33. On the iron rich side, the drop in Curie temperature and magnetic moment when increasing the Mn content is more rapid than for Co substitution. On the manganese rich side an antiferromagnetic arrangement with small magnetic moments was found. The interlayer exchange coupling and the magnetocrystalline anisotropy energy of Fe/V superlattices were studied. The coupling strength was found to vary with the thickness of the iron layers. To describe the in-plane four-fold anisotropy, the inclusion of surface terms proved necessary. The in-plane four fold anisotropy was also studied in a series of Fe/Co superlattices, where the thickness of the Co layers was kept thin so that the bcc structure could be stabilized. Only for samples with a large amount of iron, the easy axis was found to be [100]. The easy axis of bulk bcc Co was therefor suggested to be [111].
139

Synthesis, Kinetic and Photocatalytic Studies of Porphyrin-Ruthenium-Oxo Complexes

Huang, Yan 01 August 2010 (has links)
Macrocyclic ligand-complexed transition metal-oxo intermediates are the active oxidizing species in a variety of important biological and catalytic oxidation reactions. Many transition metal catalysts have been designed to mimic the predominant oxidation catalysts in Nature, namely the cytochrome P450 enzymes. Ruthenium porphyrin complexes have been the center of the research and have successfully been utilized, as catalysts, in major oxidation reactions such as the hydroxylation of alkanes. This study focuses on kinetic and photocatalytic studies of oxidation reactions with wellcharacterized high-valent ruthenium-oxo porphyrin complexes. The trans-dioxoruthenium(VI) porphyrins have been among the best characterized metal-oxo intermediates and their involvement as the active oxidant in the hydrocarbon oxidation have been extensively studied. Following the literature known methods, a series of trans-dioxoruthenium(VI) porphyrin complexes (3a-b) were synthesized and spectroscopically characterized by UV-vis, IR and lH-NMR. In addition to the well-known chemical methods, we developed a novel photochemical approach for generation of trans-dioxoruthenium(VI) porphyrins with visible light. The fast kinetic study of two-electron oxidations of para-substituted phenyl methyl sulfides by these dioxoruthenium(VI) species was conducted by using stopped-flow spectroscopy. Results showed that the decay of trans--dioxoruthenium(VI) porphyrins in the presence of reactive sulfides follows a biexponential process. The reactivity order in the series of dioxoruthenium complexes follows TPFPP> TPP> TMP, consistent with expectations based on the electrophilic nature of high-valent metal-oxo species. Moreover, the sulfoxidation reactions are 3 to 4 orders of magnitude faster than the well-known epoxidation reactions. In addition, several ruthenium porphyrins were used as the catalysts in the competitive oxidation reactions to identify the kinetically competent oxidants during catalytic turnover conditions. The photocatalytic studies of aerobic oxidation reactions of hydrocarbons catalyzed by a bis-porphyrin-ruthenium(lV) fl-OXO dimer using atmospheric oxygen as oxygen source in the absence of co-reductants were investigated as well. The ruthenium(lV) fl-OXO bisporphyrin (6a) was found to catalyze aerobic oxidation of a variety of organic substrates efficiently. By comparison, 6a was found to be more efficient photocatalyst than the well-known 3a under identical conditions. A KIE at 298K was found to be larger than those observed in autoxidation processes, suggesting a nonradical mechanism that involved the intermediacy of ruthenium(V)-oxo species as postulated.
140

Synthesis and structure-property relationships in selected metal fluorides

Reisinger, Sandra A. January 2012 (has links)
There has been an increase in the interest in fluoride materials over the last decade. This interest has focused on multiferroic materials and kagome lattices, to name but a few areas. This thesis focuses on the synthesis and crystallographic characterisation of selected transition metal fluorides and oxyfluorides. Work is presented on the tetragonal tungsten bronze solid solutions of KₓFeF₃, where x = 0.58 and x ≈ 0.5, and the copper analogue, K₃Cu₃Fe₂F₁₅; the kagome structure of Cs₂ZrCu₃F₁₂; and hydrothermal reactions using vanadium, manganese, or molybdenum as the transition metals in the formation of new fluorides and oxyfluorides. The tetragonal tungsten bronze compounds KₓFeF₃ (x = 0.58 and x ≈ 0.5) are both tetragonal at 500 K. In the variant with the lower K-content, there is a clear phase separation into two tetragonal phases even at this temperature. The K₀.₅₈FeF₃ sample separates into two distinct phases below 340 K to possess one tetragonal and one orthorhombic phase. Then at roughly 300 K, both samples undergo a phase transition where the tetragonal phase in the P4/mbm space group in K₀.₅₈FeF₃ changes to an orthorhombic phase with a larger unit cell; and the tetragonal phase in P4₂bc for the K₀.₅FeF₃ sample changes to the same orthorhombic model, whilst the P4/mbm model remains unchanged. The evolution of the lattice parameters and phase fractions is studied in detail using synchrotron powder X-ray diffraction (sPXRD). The kagome structure investigated, Cs₂ZrCu₃F₁₂, possesses the “ideal” kagome lattice at room temperature, but previous work has suggested that there is a phase transition at 225 K. The two structures are determined by single crystal X-ray diffraction at 300 K and 125 K. Variable temperature sPXRD studies are performed between these two temperature ranges to determine the phase evolution as a function of temperature. The structure changes from a rhombohedral to a monoclinic phase at low temperature. This is the result of the buckling of the kagome layers at the phase transition. The Zr⁴⁺ ion changes from 6 to 7 coordinate and this is seen as the main driving force for the distortion of the kagome layer from its “ideal” planar arrangement. ii The phase transition is first-order as seen from the electrical impedance measurements. The hydrothermal reactions presented reveal seven new materials and their crystal structures. Sr₂V₂F₁₀·H₂O is new and found to be isostructural to Sr₂Fe₂F₁₀·H₂O. BaVO₂F₃ is a cubic material that is potentially piezoelectric. Two hybrid organic inorganic manganese compounds are reported. The ladder structure (C₃N₂H₅)[Mn₂F₆(H₂O)₂] crystallises in a polar space group and shows promise as a candidate for multiferroic studies. The second hybrid material, (C₇NH₁₆)₂[MnF₅(H₂O)]·2H₂O, crystallises in a centrosymmetric space group. The Mo hybrid materials are all centrosymmetric and possess isolated molybdenum-centred monomeric or dimeric octahedral units.

Page generated in 0.1296 seconds