• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topologie und Regulation der Manduca sexta V-ATPase

Reineke, Stephan 22 November 2002 (has links)
Topologie und Regulation der Manduca sexta V-ATPase Die V-ATPase im Mitteldarm der Tabakschwärmerraupen von Manduca sexta besteht aus zwölf Untereinheiten, von denen vier den membranständigen Vo- und acht den cytosolischen V1-Komplex bilden. Das Enzym energetisiert unter ATP-Verbrauch eine Protonentranslokation über die Gobletzellapikalmembran, wobei eine Potentialdifferenz von etwa 250 mV aufgebaut wird. Durch diese Spannung wird ein elektrogener K+/2H+-Antiport getrieben und indirekt ein K+/Aminosäure-Symport, wodurch die Nährstoffversorgung der Raupen gesichert wird. Da die V-ATPase sehr viel ATP verbraucht, erscheint es ökonomisch, diese in Hungerperioden durch die Dissoziation des Enzyms in den cytosolische V1- und den Vo-Komplex, abzuschalten. In der vorliegenden Arbeit wurde untersucht, ob auch die Biosynthese der V-ATPase Untereinheiten in Hungerperioden reduziert wird und was eventuellen Änderungen von Transkriptionsraten zugrunde liegt. Mit Ausnahme der Untereinheit D waren die Transkriptmengen aller V-ATPase Untereinheiten in Hungerperioden erniedrigt. Am stärksten betraf dies die Untereinheit G, was auch für den Anstieg der Transkriptmengen nach erneuter Futterzufuhr galt. Da Hungerperioden auch in der Entwicklung von Raupen während der Häutungen vorkommen, wurde exemplarisch die Biosynthese von drei, die verschiedenen Bereiche der V-ATPase (V1-Kopf: Untereinheit B, V1-Stiel: Untereinheit G, Vo-Komplex: Untereinheit d) repräsentierenden Untereinheiten, untersucht. In allen drei Fällen konnte eine Reduktion der Transkriptmengen in der Mitte der Häutungsphase festgestellt werden, welche zu ihrem Ende hin wieder aufgehoben wurde. Der Abfall und Anstieg der mRNA-Mengen korrelierte mit den Titern der beiden Häutungshormone der Insekten: negativ mit dem Titer des Ecdysons und positiv mit dem des Juvenilhormons. Die Injektion von 20-Hydroxyecdyson in fressende Raupen hatte die Reduktion der Transkriptmengen zur Folge, während Juvenilhormon III fast keinen Einfluss ausübte. Darüberhinaus war zu beobachten, dass sich nach Injektion von 20-Hydroxyecdyson die V1-Komplexe von den apikalen Gobletzellmembranen ablösten. Um auch den Einfluss der Häutungshormone auf die Promotoraktivität zu untersuchen, und dadurch auf Unterschiede in der RNA-Stabilität zu schließen, wurden ca. 1 kb lange 5`-Bereiche stromaufwärts vom Startcodon der drei verwendeten Gene mvB, mvG und mvd in Reportergenassays getestet. Hierbei wurde als Reportergen eine Luciferase verwendet, die unter der Kontrolle der jeweiligen 5`-Region der V-ATPase Untereinheit stand. Nach Transfektion von Sf21-Zellen konnte wie auch in den vorangegangenen Experimenten gezeigt werden, dass 20-Hydroxyecdyson die Promotoraktivität aller drei V-ATPase-Gene nach einem kurzzeitigen Anstieg bei den Genen mvB und mvG über einen längeren Zeitraum negativ beeinflusst und nach 48 h zu einer Reduktion auf 30-50% gegenüber der Kontrolle führt.Im Gegensatz dazu führte die Anwesenheit von Juvenilhormon III zur Aktivitätssteigerung von mvG um den Faktor 3, während die Aktivität der anderen 5`-Bereiche nicht signifikant verändert wurde.Zusammen mit den Daten der Transkriptmengen unter Juvenilhormon III Einfluss könnte dies der erste Hinweis auf eine reduzierte Stabilität der mRNA der Untereinheit G sein. Des Weiteren wurde in der vorliegenden Arbeit die Nukleotidsequenz der bei der Insekten V-ATPase lange Zeit nicht nachweisbaren Untereinheit a des Vo-Komplexes aufgeklärt. Neben einer ubiquitär vorkommenden Isoform konnte auch eine Teilsequenz einer Malpighigefäß spezifischen Isoform nachgewiesen werden. Antikörper gegen den in dieser Arbeit exprimierten cytoplasmatischen N-Terminus wurden eingesetzt, um die Untereinheit in der Immunhistochemie sowie in den gebildeten Komplexen der Vernetzungsexperimente nachzuweisen. Die durch Kupfer(II)-chlorid induzierte Vernetzung von Cysteinresten der Untereinheiten des V1Vo-Holoenzyms führte zu der Identifizierung von drei Banden, wobei diese wahrscheinlich aus verschiedenen Subkomplexen der Untereinheiten a, A, B, C, E und G aufgebaut waren. Durch diese Ergebnisse und den Daten aus dem Verdau des V1Vo-Holoenzyms mit Trypsin konnte ein neues Modell der V-ATPase erstellt werden, dass sich erheblich von den bisherigen Modellen unterscheidet, insbesondere in der Lokalisation der Untereinheiten des Stators.
2

Global analysis of cellular protein dynamics by pulse-labeling and quanti tati ve mass spectrometry

Schwanhäußer, Björn 05 April 2011 (has links)
Der erste Teil der Arbeit beschreibt die Etablierung einer modifizierten Form des klassichen SILAC-Verfahrens, das in der quantitativen Massenspektrometrie zur Bestimmung von relativen Änderungen in Proteinmengen benutzt wird. Im sog. „pulsed SILAC (pSILAC)“ Verfahren werden Zellen im Zuge einer differentiellen Behandlung in Kulturmedien transferiert, die unterschiedlich Isotop-markierte Aminosäuren enthalten. Da hier die Quantifizierung auf dem Verhältnis der neusynthetisierten Proteinmengen beruht, können gezielt Unterschiede in der Proteinproduktion bestimmt werden. Mit Hilfe von pSILAC konnte im zweiten Teil der Arbeit erstmals quantitativ erfasst werden, welchen Einfluss microRNAs auf die Proteinsynthese ausüben. So konnte gezeigt werden, dass sowohl die Überexpression als auch die Repression einzelner microRNAs die Produktion hunderter Proteine beeinflussen kann. Außerdem konnten Genprodukte identifiziert werden, die ausschließlich translational reguliert werden. Die Messung von Proteinneusynthese ermöglichte auch die Bestimmung von Proteinumsatzraten, dargestellt im dritten Teil der Arbeit. Zusammen mit mRNA-Umsatzraten sowie Protein- und mRNA-Mengen bilden sie die Grundlage für eine dynamische Beschreibung zelluärer Genexpression. Durch den gleichzeitigen Einsatz des Nukleosidanalogons 4-Thiouridin (4sU) und von schweren Aminosäuren (SILAC) konnte eine metabolische Markierung neusynthetiserter mRNAs und Proteine in murinen Fibroblasten erreicht und damit eine Berechnung von Protein- und mRNA-Halbwertszeiten und absoluten Mengen für ca. 5,000 Gene ermöglicht werden. Während mRNA- und Proteinenmengen deutlich korrelierten, war zwischen mRNA- und Proteinhalbwertszeiten nur eine äußerste schwache Korrelation zu erkennen. Dennoch stehen mRNA- und Proteinumsatzraten nicht einem willkürlichen Zusammhang zu einander, da bestimmte Kombinationen von mRNA- und Proteinhalbwertszeiten eine Optimierung von Genen hinsichtlich ihrer biologischen Funktionen erkennen ließen. / The first part of the thesis describes the establishment of a modified version of the classic SILAC approach routinely used in quantitative mass spectrometry (MS) to assay relative changes in protein levels. In the newly-devised approach termed pulsed SILAC (pSILAC) differentially treated cells are transferred to culture medium supplemented with different versions of stable-isotope labeled heavy amino acids. As MS-based relative quantification is exclusively based on the newly-synthesized heavy protein amounts the method enables the detection of differences in protein production resulting from the treatment. The second part of the thesis shows the use of pSILAC to globally quantify the impact of microRNAs onto the proteome. Ectopic over-expression or knock-down of a single microRNA both affected protein production of hundreds of proteins. pSILAC identified several target genes as exclusively translationally regulated as changes in corresponding transcript levels were virtually absent. Measuring newly-synthesized protein amounts with heavy amino acids in a pulsed-labeling fashion has also been used to determine turnover rates of individual proteins, described in the third part of the present work. Along with transcript turnover as well as mRNA and protein levels they are essential for a dynamic description of gene expression. Simultaneous application of the nucleoside analogue 4-thiouridine (4sU) and heavy amino acids (SILAC) to metabolically label newly-produced mRNAs and proteins in mouse fibroblasts resulted in the calculation of mRNA and protein lifetimes and absolute levels for approximately 5,000 genes. While mRNA and protein levels were overall well correlated, a correlation between mRNA and protein half-lives was virtually absent. Yet this seemingly chaotic distribution of mRNA and protein half-lives was highly instructive since specific gene subsets have obviously evolved distinct combinations of half-lives that relate to their biological functions.

Page generated in 0.1229 seconds