Spelling suggestions: "subject:"translational bioinformatics"" "subject:"translational ioinformatics""
1 |
In silico virulence prediction and virulence gene discovery of Streptococcus agalactiaeLin, Frank Po-Yen, Centre for Health Informatics, Faculty of Medicine, UNSW January 2009 (has links)
Physicians frequently face challenges in predicting which bacterial subpopulations are likely to cause severe infections. A more accurate prediction of virulence would improve diagnostics and limit the extent of antibiotic resistance. Nowadays, bacterial pathogens can be typed with high accuracy with advanced genotyping technologies. However, effective translation of bacterial genotyping data into assessments of clinical risk remains largely unexplored. The discovery of unknown virulence genes is another key determinant of successful prediction of infectious disease outcomes. The trial-and-error method for virulence gene discovery is time-consuming and resource-intensive. Selecting candidate genes with higher precision can thus reduce the number of futile trials. Several in silico candidate gene prioritisation (CGP) methods have been proposed to aid the search for genes responsible for inherited diseases in human. It remains uninvestigated as to how the CGP concept can assist with virulence gene discovery in bacterial pathogens. The main contribution of this thesis is to demonstrate the value of translational bioinformatics methods to address challenges in virulence prediction and virulence gene discovery. This thesis studied an important perinatal bacterial pathogen, group B streptococcus (GBS), the leading cause of neonatal sepsis and meningitis in developed countries. While several antibiotic prophylactic programs have successfully reduced the number of early-onset neonatal diseases (infections that occur within 7 days of life), the prevalence of late-onset infections (infections that occur between 7??30 days of life) remained constant. In addition, the widespread use of intrapartum prophylactic antibiotics may introduce undue risk of penicillin allergy and may trigger the development of antibiotic-resistant microorganisms. To minimising such potential harm, a more targeted approach of antibiotic use is required. Distinguish virulent GBS strains from colonising counterparts thus lays the cornerstone of achieving the goal of tailored therapy. There are three aims of this thesis: 1. Prediction of virulence by analysis of bacterial genotype data: To identify markers that may be associated with GBS virulence, statistical analysis was performed on GBS genotype data consisting of 780 invasive and 132 colonising S. agalactiae isolates. From a panel of 18 molecular markers studied, only alp3 gene (which encodes a surface protein antigen commonly associated with serotype V) showed an increased association with invasive diseases (OR=2.93, p=0.0003, Fisher??s exact test). Molecular serotype II (OR=10.0, p=0.0007) was found to have a significant association with early-onset neonatal disease when compared with late-onset diseases. To investigate whether clinical outcomes can be predicted by the panel of genotype markers, logistic regression and machine learning algorithms were applied to distinguish invasive isolates from colonising isolates. Nevertheless, the predictive analysis only yielded weak predictive power (area under ROC curve, AUC: 0.56??0.71, stratified 10-fold cross-validation). It was concluded that a definitive predictive relationship between the molecular markers and clinical outcomes may be lacking, and more discriminative markers of GBS virulence are needed to be investigated. 2. Development of two computational CGP methods to assist with functional discovery of prokaryotic genes: Two in silico CGP methods were developed based on comparative genomics: statistical CGP exploits the differences in gene frequency against phenotypic groups, while inductive CGP applies supervised machine learning to identify genes with similar occurrence patterns across a range of bacterial genomes. Three rediscovery experiments were carried out to evaluate the CGP methods: a) Rediscovery of peptidoglycan genes was attempted with 417 published bacterial genome sequences. Both CGP methods achieved their best AUC >0.911 in Escherichia coli K-12 and >0.978 Streptococcus agalactiae 2603 (SA-2603) genomes, with an average improvement in precision of >3.2-fold and a maximum of >27-fold using statistical CGP. A median AUC of >0.95 could still be achieved with as few as 10 genome examples in each group in the rediscovery of the peptidoglycan metabolism genes. b) A maximum of 109-fold improvement in precision was achieved in the rediscovery of anaerobic fermentation genes. c) In the rediscovery experiment with genes of 31 metabolic pathways in SA-2603, 14 pathways achieved an AUC >0.9 and 28 pathways achieved AUC >0.8 with the best inductive CGP algorithms. The results from the rediscovery experiments demonstrated that the two CGP methods can assist with the study of functionally uncategorised genomic regions and the discovery of bacterial gene-function relationships. 3. Application of the CGP methods to discover GBS virulence genes: Both statistical and inductive CGP were applied to assist with the discovery of unknown GBS virulence factors. Among a list of hypothetical protein genes, several highly-ranked genes were plausibly involved in molecular mechanisms in GBS pathogenesis, including several genes encoding family 8 glycosyltransferase, family 1 and family 2 glycosyltransferase, multiple adhesins, streptococcal neuraminidase, staphylokinase, and other factors that may have roles in contributing to GBS virulence. Such genes may be candidates for further biological validation. In addition, the co-occurrence of these genes with currently known virulence factors suggested that the virulence mechanisms of GBS in causing perinatal diseases are multifactorial. The procedure demonstrated in this prioritisation task should assist with the discovery of virulence genes in other pathogenic bacteria.
|
2 |
Computational Network Mining in High-Risk Patients with Multiple MyelomaYu, Christina Y. January 2020 (has links)
No description available.
|
3 |
Auxílio na prevenção de doenças crônicas por meio de mapeamento e relacionamento conceitual de informações em biomedicina / Support in the Prevention of Chronic Diseases by means of Mapping and Conceptual Relationship of Biomedical InformationPollettini, Juliana Tarossi 28 November 2011 (has links)
Pesquisas recentes em medicina genômica sugerem que fatores de risco que incidem desde a concepção de uma criança até o final de sua adolescência podem influenciar no desenvolvimento de doenças crônicas da idade adulta. Artigos científicos com descobertas e estudos inovadores sobre o tema indicam que a epigenética deve ser explorada para prevenir doenças de alta prevalência como doenças cardiovasculares, diabetes e obesidade. A grande quantidade de artigos disponibilizados diariamente dificulta a atualização de profissionais, uma vez que buscas por informação exata se tornam complexas e dispendiosas em relação ao tempo gasto na procura e análise dos resultados. Algumas tecnologias e técnicas computacionais podem apoiar a manipulação dos grandes repositórios de informações biomédicas, assim como a geração de conhecimento. O presente trabalho pesquisa a descoberta automática de artigos científicos que relacionem doenças crônicas e fatores de risco para as mesmas em registros clínicos de pacientes. Este trabalho também apresenta o desenvolvimento de um arcabouço de software para sistemas de vigilância que alertem profissionais de saúde sobre problemas no desenvolvimento humano. A efetiva transformação dos resultados de pesquisas biomédicas em conhecimento possível de ser utilizado para beneficiar a saúde pública tem sido considerada um domínio importante da informática. Este domínio é denominado Bioinformática Translacional (BUTTE,2008). Considerando-se que doenças crônicas são, mundialmente, um problema sério de saúde e lideram as causas de mortalidade com 60% de todas as mortes, o presente trabalho poderá possibilitar o uso direto dos resultados dessas pesquisas na saúde pública e pode ser considerado um trabalho de Bioinformática Translacional. / Genomic medicine has suggested that the exposure to risk factors since conception may influence gene expression and consequently induce the development of chronic diseases in adulthood. Scientific papers bringing up these discoveries indicate that epigenetics must be exploited to prevent diseases of high prevalence, such as cardiovascular diseases, diabetes and obesity. A large amount of scientific information burdens health care professionals interested in being updated, once searches for accurate information become complex and expensive. Some computational techniques might support management of large biomedical information repositories and discovery of knowledge. This study presents a framework to support surveillance systems to alert health professionals about human development problems, retrieving scientific papers that relate chronic diseases to risk factors detected on a patient\'s clinical record. As a contribution, healthcare professionals will be able to create a routine with the family, setting up the best growing conditions. According to Butte, the effective transformation of results from biomedical research into knowledge that actually improves public health has been considered an important domain of informatics and has been called Translational Bioinformatics. Since chronic diseases are a serious health problem worldwide and leads the causes of mortality with 60% of all deaths, this scientific investigation will probably enable results from bioinformatics researches to directly benefit public health.
|
4 |
Auxílio na prevenção de doenças crônicas por meio de mapeamento e relacionamento conceitual de informações em biomedicina / Support in the Prevention of Chronic Diseases by means of Mapping and Conceptual Relationship of Biomedical InformationJuliana Tarossi Pollettini 28 November 2011 (has links)
Pesquisas recentes em medicina genômica sugerem que fatores de risco que incidem desde a concepção de uma criança até o final de sua adolescência podem influenciar no desenvolvimento de doenças crônicas da idade adulta. Artigos científicos com descobertas e estudos inovadores sobre o tema indicam que a epigenética deve ser explorada para prevenir doenças de alta prevalência como doenças cardiovasculares, diabetes e obesidade. A grande quantidade de artigos disponibilizados diariamente dificulta a atualização de profissionais, uma vez que buscas por informação exata se tornam complexas e dispendiosas em relação ao tempo gasto na procura e análise dos resultados. Algumas tecnologias e técnicas computacionais podem apoiar a manipulação dos grandes repositórios de informações biomédicas, assim como a geração de conhecimento. O presente trabalho pesquisa a descoberta automática de artigos científicos que relacionem doenças crônicas e fatores de risco para as mesmas em registros clínicos de pacientes. Este trabalho também apresenta o desenvolvimento de um arcabouço de software para sistemas de vigilância que alertem profissionais de saúde sobre problemas no desenvolvimento humano. A efetiva transformação dos resultados de pesquisas biomédicas em conhecimento possível de ser utilizado para beneficiar a saúde pública tem sido considerada um domínio importante da informática. Este domínio é denominado Bioinformática Translacional (BUTTE,2008). Considerando-se que doenças crônicas são, mundialmente, um problema sério de saúde e lideram as causas de mortalidade com 60% de todas as mortes, o presente trabalho poderá possibilitar o uso direto dos resultados dessas pesquisas na saúde pública e pode ser considerado um trabalho de Bioinformática Translacional. / Genomic medicine has suggested that the exposure to risk factors since conception may influence gene expression and consequently induce the development of chronic diseases in adulthood. Scientific papers bringing up these discoveries indicate that epigenetics must be exploited to prevent diseases of high prevalence, such as cardiovascular diseases, diabetes and obesity. A large amount of scientific information burdens health care professionals interested in being updated, once searches for accurate information become complex and expensive. Some computational techniques might support management of large biomedical information repositories and discovery of knowledge. This study presents a framework to support surveillance systems to alert health professionals about human development problems, retrieving scientific papers that relate chronic diseases to risk factors detected on a patient\'s clinical record. As a contribution, healthcare professionals will be able to create a routine with the family, setting up the best growing conditions. According to Butte, the effective transformation of results from biomedical research into knowledge that actually improves public health has been considered an important domain of informatics and has been called Translational Bioinformatics. Since chronic diseases are a serious health problem worldwide and leads the causes of mortality with 60% of all deaths, this scientific investigation will probably enable results from bioinformatics researches to directly benefit public health.
|
5 |
Études de réseaux d’expression génique : utilité pour l’élucidation des déterminants génétiques des traits complexesScott-Boyer, Marie Pier 04 1900 (has links)
Les traits quantitatifs complexes sont des caractéristiques mesurables d’organismes vivants
qui résultent de l’interaction entre plusieurs gènes et facteurs environnementaux.
Les locus génétiques liés à un caractère complexe sont appelés «locus de traits quantitatifs
» (QTL). Récemment, en considérant les niveaux d’expression tissulaire de milliers
de gènes comme des traits quantitatifs, il est devenu possible de détecter des «QTLs
d’expression» (eQTL). Alors que ces derniers ont été considérés comme des phénotypes
intermédiaires permettant de mieux comprendre l’architecture biologique des traits complexes, la majorité des études visent encore à identifier une mutation causale dans un seul gène. Cette approche ne peut remporter du succès que dans les situations où le gène incriminé a un effet majeur sur le trait complexe, et ne permet donc pas d’élucider les
situations où les traits complexes résultent d’interactions entre divers gènes.
Cette thèse propose une approche plus globale pour : 1) tenir compte des multiples
interactions possibles entre gènes pour la détection de eQTLs et 2) considérer comment
des polymorphismes affectant l’expression de plusieurs gènes au sein de groupes de
co-expression pourraient contribuer à des caractères quantitatifs complexes. Nos contributions sont les suivantes :
Nous avons développé un outil informatique utilisant des méthodes d’analyse multivariées
pour détecter des eQTLs et avons montré que cet outil augmente la sensibilité
de détection d’une classe particulière de eQTLs.
Sur la base d’analyses de données d’expression de gènes dans des tissus de souris
recombinantes consanguines, nous avons montré que certains polymorphismes
peuvent affecter l’expression de plusieurs gènes au sein de domaines géniques de
co-expression.
En combinant des études de détection de eQTLs avec des techniques d’analyse
de réseaux de co-expression de gènes dans des souches de souris recombinantes
consanguines, nous avons montré qu’un locus génétique pouvait être lié à la fois à
l’expression de plusieurs gènes au niveau d’un domaine génique de co-expression
et à un trait complexe particulier (c.-à-d. la masse du ventricule cardiaque gauche).
Au total, nos études nous ont permis de détecter plusieurs mécanismes par lesquels
des polymorphismes génétiques peuvent être liés à l’expression de plusieurs gènes, ces
derniers pouvant eux-mêmes être liés à des traits quantitatifs complexes. / Complex quantitative traits are measurable characteristics of living organisms resulting
from the interaction between multiple genes and environmental factors. Genetic loci
associated with complex trait are called "quantitative trait loci" (QTL). Recently, considering
the expression levels of thousands of genes as quantitative traits, it has become
possible to detect "expression QTLs " (eQTL). These eQTL are considered intermediate
phenotypes and are used to better understand the biological architecture of complex
traits. However the majority of studies still try to identify a causal mutation in a single
gene. This approach can only meet success in situations where the gene incriminate as
a major effect on the complex trait, and therefore can not elucidate the situations where
complex traits result from interactions between various genes.
This thesis proposes a more comprehensive approach to: 1) take into account the possible
interactions between multiple genes for the detection of eQTLs and 2) consider how
polymorphisms affecting the expression of several genes in a module of co-expression
may contribute to quantitative complex traits. Our contributions are as follows:
We have developed a tool using multivariate analysis techniques to detect eQTLs,
and have shown that this tool increases the sensitivity of detection of a particular
class of eQTLs.
Based on the data analysis of gene expression in recombinant inbred strains mice
tissues, we have shown that some polymorphisms may affect the expression of
several genes in domain of co-expression.
Combining eQTLs detection studies with network of co-expression genes analysis
in recombinant inbred strains mice, we showed that a genetic locus could be linked
to both the expression of multiple genes at a domain of gene co-expression and a
specific complex trait (i.e. left ventricular mass).
Our studies have detected several mechanisms by which genetic polymorphisms may
be associated with the expression of several genes, and may themselves be linked to quantitative complex traits.
|
6 |
Études de réseaux d’expression génique : utilité pour l’élucidation des déterminants génétiques des traits complexesScott-Boyer, Marie Pier 04 1900 (has links)
Les traits quantitatifs complexes sont des caractéristiques mesurables d’organismes vivants
qui résultent de l’interaction entre plusieurs gènes et facteurs environnementaux.
Les locus génétiques liés à un caractère complexe sont appelés «locus de traits quantitatifs
» (QTL). Récemment, en considérant les niveaux d’expression tissulaire de milliers
de gènes comme des traits quantitatifs, il est devenu possible de détecter des «QTLs
d’expression» (eQTL). Alors que ces derniers ont été considérés comme des phénotypes
intermédiaires permettant de mieux comprendre l’architecture biologique des traits complexes, la majorité des études visent encore à identifier une mutation causale dans un seul gène. Cette approche ne peut remporter du succès que dans les situations où le gène incriminé a un effet majeur sur le trait complexe, et ne permet donc pas d’élucider les
situations où les traits complexes résultent d’interactions entre divers gènes.
Cette thèse propose une approche plus globale pour : 1) tenir compte des multiples
interactions possibles entre gènes pour la détection de eQTLs et 2) considérer comment
des polymorphismes affectant l’expression de plusieurs gènes au sein de groupes de
co-expression pourraient contribuer à des caractères quantitatifs complexes. Nos contributions sont les suivantes :
Nous avons développé un outil informatique utilisant des méthodes d’analyse multivariées
pour détecter des eQTLs et avons montré que cet outil augmente la sensibilité
de détection d’une classe particulière de eQTLs.
Sur la base d’analyses de données d’expression de gènes dans des tissus de souris
recombinantes consanguines, nous avons montré que certains polymorphismes
peuvent affecter l’expression de plusieurs gènes au sein de domaines géniques de
co-expression.
En combinant des études de détection de eQTLs avec des techniques d’analyse
de réseaux de co-expression de gènes dans des souches de souris recombinantes
consanguines, nous avons montré qu’un locus génétique pouvait être lié à la fois à
l’expression de plusieurs gènes au niveau d’un domaine génique de co-expression
et à un trait complexe particulier (c.-à-d. la masse du ventricule cardiaque gauche).
Au total, nos études nous ont permis de détecter plusieurs mécanismes par lesquels
des polymorphismes génétiques peuvent être liés à l’expression de plusieurs gènes, ces
derniers pouvant eux-mêmes être liés à des traits quantitatifs complexes. / Complex quantitative traits are measurable characteristics of living organisms resulting
from the interaction between multiple genes and environmental factors. Genetic loci
associated with complex trait are called "quantitative trait loci" (QTL). Recently, considering
the expression levels of thousands of genes as quantitative traits, it has become
possible to detect "expression QTLs " (eQTL). These eQTL are considered intermediate
phenotypes and are used to better understand the biological architecture of complex
traits. However the majority of studies still try to identify a causal mutation in a single
gene. This approach can only meet success in situations where the gene incriminate as
a major effect on the complex trait, and therefore can not elucidate the situations where
complex traits result from interactions between various genes.
This thesis proposes a more comprehensive approach to: 1) take into account the possible
interactions between multiple genes for the detection of eQTLs and 2) consider how
polymorphisms affecting the expression of several genes in a module of co-expression
may contribute to quantitative complex traits. Our contributions are as follows:
We have developed a tool using multivariate analysis techniques to detect eQTLs,
and have shown that this tool increases the sensitivity of detection of a particular
class of eQTLs.
Based on the data analysis of gene expression in recombinant inbred strains mice
tissues, we have shown that some polymorphisms may affect the expression of
several genes in domain of co-expression.
Combining eQTLs detection studies with network of co-expression genes analysis
in recombinant inbred strains mice, we showed that a genetic locus could be linked
to both the expression of multiple genes at a domain of gene co-expression and a
specific complex trait (i.e. left ventricular mass).
Our studies have detected several mechanisms by which genetic polymorphisms may
be associated with the expression of several genes, and may themselves be linked to quantitative complex traits.
|
Page generated in 0.1096 seconds