• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 18
  • 15
  • 10
  • 7
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 194
  • 66
  • 41
  • 41
  • 39
  • 38
  • 35
  • 34
  • 31
  • 26
  • 23
  • 23
  • 23
  • 20
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Functional studies on the human sodium proton exchanger isoform 1

Tzeng, Jennifer 06 1900 (has links)
The mammalian Na+/H+ exchanger isoform 1 (NHE1) is a ubiquitous membrane protein that exchanges one intracellular H+ for an extracellular Na+, thereby regulating cell pH and volume. NHE1 catalytic activity is mediated by a transmembrane (TM) domain with 12 transmembrane segments. We performed cysteine scanning mutagenesis on TMVI (Asn227–Ile249) of NHE1. Each residue of TMVI was mutated into a cysteine in the background of a cysteineless NHE1 protein. MTSET and MTSES are sulfhydryl reactive membrane impermeable compounds able to react with accessible cysteines. Asp238Cys, Pro239Cys, and Glu247Cys expressed inactive NHE1. Asn227Cys, Ile233Cys, and Leu243Cys were strongly inhibited by MTSET, suggesting their pore lining properties. More mutations were introduced to characterize critical residues in TMVI. The Glu248Gln and Leu243Ala mutants were more susceptible to limited proteolytic attack by trypsin suggesting an altered conformation. The results suggest that Glu248 and Leu243 are important in protein structure, stability, and folding.
12

The electrical manipulation of bio-formulations for delivery to the lung

Davies, Lee January 2001 (has links)
No description available.
13

The Use of Internal and External Functional Domains to Improve Transmembrane Protein Topology Prediction

Xu, Wei January 2004 (has links)
Membrane proteins are involved in vital cellular functions and have important implications in disease processes, drug design and therapy. However, it is difficult to obtain diffraction quality crystals to study transmembrane protein structure. Transmembrane protein topology prediction tools try to fill in the gap between abundant number of transmembrane proteins and scarce number of known membrane protein structures (3D structure and biochemically characterized topology). However, at present, the prediction accuracy is still far from perfect. TMHMM is the current state-of- the-art method for membrane protein topology prediction. In order to improve the prediction accuracy of TMHMM, based upon the method of GenomeScan, the author implemented AHMM (augmented HMM) by incorporating functional domain information externally to TMHMM. Results show that AHMM is better than TMHMM on both helix and sidedness prediction. This improvement is verified by both statistical tests as well as sensitivity and specificity studies. It is expected that when more and more functional domain predictors are available, the prediction accuracy will be further improved.
14

Influenza neuraminidase assembly : Evolution of domain cooperativity

da Silveira Vieira da Silva, Diogo January 2016 (has links)
Influenza A virus (IAV) is one of the most common viruses circulating in the human population and is responsible for seasonal epidemics that affect millions of individuals worldwide. The need to develop new drugs and vaccines against IAVs led scientists to study the main IAV surface antigens hemagglutinin (HA) and neuraminidase (NA). In contrast to HA, which facilitates cell binding and entry of IAVs, NA plays a critical role in the release and spreading of the viral particles. The aim of this thesis was to study how the enzymatic head domain, the stalk and transmembrane domains have evolved to facilitate NA assembly into an enzymatically active homotetramer, and to determine how these regions have evolved together over time. Initially, we observed that the NA transmembrane domain (TMD) assists in the assembly of the head domain by tethering the stalk to the membrane in a tetrameric conformation. Upon examination of the available sequences for NA, we found that the subtype 1 (N1) TMDs have become more polar since 1918 while the subtype 2 (N2) TMDs have consistently retained the expected hydrophobicity of a TMD. Further analysis of the amino-acid sequences revealed a characteristic indicative of an amphipathic assembly for the N1 TMDs that were absent in the TMDs from N2. The function of the amphipathic assembly was examined by creating two viral chimeras, where the original TMD was replaced by another more polar or an engineered hydrophobic TMD. In both cases the viruses carrying the NA TMD chimeras showed reduced growth indicating that the TMD changes created an incompatibility with the head domain of NA. After prolonged passaging of these viruses, natural occurring mutations were observed in the TMD that were able to rescue the defects in viral growth, head domain folding and budding by creating a TMD with the appropriate polar or hydrophobic assembly properties. Interestingly, we observed that N1 and N2 have a great difference in the localization and length of amino-acid deletions occurring in the stalk region. In line with this observation, our data suggests that N1 supports large stalk deletions due to its strong TMD association, whereas N2 requires the presence of a strong oligomerizing stalk region to compensate for its weak TMD interaction. These results have demonstrated how important the NA TMD is for viral infectivity and how the three different domains have evolved in a cooperative manner to promote proper NA assembly / Influensa är en av de mest smittsamma sjukdomarna som drabbar människor och de flesta kan räkna med att bli infekterade många gånger under sin livstid. Influensaviruset attackerar främst luftvägarna, men kan även leda till t.ex. lunginflammation. De enskilda viruspartiklarna (virionerna) kan komma i olika former, men den vanligaste formen som används för att beskriva viruset är den sfäriska. På en virions yta så finns det två olika typer av membranproteiner, som kan liknas med två olika sorters spikar som sticker ut från viruset. Den ena ”spiken” kallas neuraminidas, eller bara kort för NA, och den andra för hemagglutinin (HA). När man har andats in ett influensavirus så kan viruset ta sig till de övre luftvägarna och vidare ner i luftstrupen för att där använda sig av HA för att ta sig in i en cell. Viruset använder sig sedan av cellen för att skapa många nya virioner, som tar sig ut ur cellen för att infektera fler celler. NA är det protein som virionerna använder sig av för att klyva sig loss från modercellen. Målet för avhandlingen var att studera NA och beskriva hur proteinet måste vara ihopsatt för att vara aktivt. NA har en uppbyggnad liknande en trädklunga, där fyra stycken identiska träd (med tillhörande rötter, stammar och trädkronor) går ihop och bildar en enda aktiv enhet, en s.k. tetramer. ”Rötterna” hos NA är den transmembrana domänen (TMD), den del av proteinet som sitter fast i influenaviruskroppen. ”Stammen”, eller stjälkdelen av NA, binder samman TMD med den största delen, huvuddomänen som motsvarar ”trädkronan”. Det är just huvuddomänen som är ansvarig för att klyva loss viruspartiklar från en modercell. Vi har i våra studier sett att det kan vara väldigt viktigt att TMD-domänerna går ihop i grupper om fyra för att hela NA ska kunna gå ihop i en tetramer och aktivt kunna klyva loss viruspartiklarna. När vi studerade TMD från olika influensavirus så märkte vi att vissa egenskaper hos TMD krävs för att de skulle kunna gå ihop, men också att dessa egenskaper inte fanns hos alla influensavirus. Virusen har evolverat över lång tid och har anpassat sig efter värdorganismerna (inklusive människan) och har hittat olika lösningar på problemet med att behöva bilda en tetramer. När vi gjorde ändringar i en TMD som vanligtvis gick ihop till en tetramer, och därmed förhindrade detta, så noterade vi att huvuddomänens funktion påverkades vilket ledde till att influensaviruset hade svårt att spridas. Vidare så har våra pågående studier på stjälkdelen visat att även denna del kan ha stor betydelse för tetrameriseringen av NA, speciellt i de fall där TM-domänen saknar egenskaper för att gå ihop. Avhandlingen tillför inte bara ny och viktig information till influensaforskningen, utan även potentiellt för framställandet av nya influensavacciner/-mediciner. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
15

The Use of Internal and External Functional Domains to Improve Transmembrane Protein Topology Prediction

Xu, Wei January 2004 (has links)
Membrane proteins are involved in vital cellular functions and have important implications in disease processes, drug design and therapy. However, it is difficult to obtain diffraction quality crystals to study transmembrane protein structure. Transmembrane protein topology prediction tools try to fill in the gap between abundant number of transmembrane proteins and scarce number of known membrane protein structures (3D structure and biochemically characterized topology). However, at present, the prediction accuracy is still far from perfect. TMHMM is the current state-of- the-art method for membrane protein topology prediction. In order to improve the prediction accuracy of TMHMM, based upon the method of GenomeScan, the author implemented AHMM (augmented HMM) by incorporating functional domain information externally to TMHMM. Results show that AHMM is better than TMHMM on both helix and sidedness prediction. This improvement is verified by both statistical tests as well as sensitivity and specificity studies. It is expected that when more and more functional domain predictors are available, the prediction accuracy will be further improved.
16

Characterization of Beta-arrestin-Modulated Lipid Kinase Activities for Diacylglycerol and Phosphatidylinositol 4-Phosphate

Nelson, Christopher David 10 May 2007 (has links)
The study of arrestins as regulators of seven transmembrane receptor (7TMR) signaling has revealed multiple levels of complexity, initiating desensitization of G protein activity and coordination of receptor internalization via clathrin‐coated pits. Recently, β‐arrestins have also been shown to act as adaptor proteins, mediating G protein‐independent signaling as well as scaffolding of enzymes that degrade second messenger molecules. This latter function was demonstrated by β‐arrestins recruiting PDE4 phosphodiesterase to Gs‐coupled β2‐adrenergic receptors, enhancing metabolism of the second messenger cAMP. As β‐arrestins universally interact with members of the 7TMR superfamily, we sought to determine if this phenomenon of concerted desensitization might be applicable to additional receptor subtypes. We screened for β‐arrestin‐binding proteins among modulators of diacylglycerol and IP3 (second messengers downstream of Gq‐coupled 7TMRs). We observed β‐ arrestins constitutively interacted with members of the diacylglycerol kinase (DGK) family, which phosphorylate diacylglycerol to create phosphatidic acid. Furthermore, examining lipid extracts of 32P labeled cells separated by TLC, we observed that overexpression of β‐arrestin enhanced phosphatidic acid (PA) production after M1 muscarinic receptor stimulation. Conversely, depletion of β‐arrestins by RNA interference showed significantly decreased agonist‐stimulated PA accumulation. Additionally, overexpression of a β‐arrestin2 mutant that binds DGKs but not receptors served as a dominant negative for agonist‐dependent DGK activity. These results demonstrate a requirement for β‐arrestins in DGK translocation to the membrane, and specifically to activated 7TMRs, where concentrations of second messengers are at their highest. Phosphatidic acid is an effector for several enzymes, including the phosphatidylinositol 5‐kinases (PIP5K), which phosphorylate PIP to make PIP2. Thus, we hypothesized β‐arrestin‐targeted DGKs may regulate PIP5K activity. PIP5K Iα associated with β‐arrestin2 in an agonist‐dependent manner in HEK293 cells, and a β‐ arrestin2 mutant defective in receptor endocytosis (a PIP2‐dependent function) was impaired. Furthermore, knockdown of β‐arrestin2 by RNAi significantly decreased the amount of PIP5K Iα detected in receptor immunoprecipitates. In TLC assays, overexpressing both β‐arrestin2 and PIP5K Iα enhanced agonist‐stimulated PIP2 labeling, while either protein alone had no effect. These data support the concept of β‐ arrestin binding to 7TMRs and enriching local membrane concentrations of PA, which then stimulates production of PIP2, promoting receptor internalization. / Dissertation
17

COARSE-GRAINED SIMULATIONS OF TRANSMEMBRANE DOMAIN INTERACTIONS IN SEMAPHROIN-PLEXIN-NEUROPILIN SIGNAL SYSTEM

Meng, Zhiyuan 28 August 2019 (has links)
No description available.
18

Transmembrane Signalling: Structural and Functional Studies on Histidine Kinase CitA

Schomburg, Benjamin 28 January 2015 (has links)
No description available.
19

The C-Terminus of Transmembrane Helix 2 (TM2) of the Escherichia coli Tar Chemorecptor Determines Signal Output and Ligand Sensitivity

Adase, Christopher A. 1981- 14 March 2013 (has links)
Methyl-accepting chemotaxis proteins MCPs can bind one or more receptor- specific ligands. In the case of the Tar MCP of Escherichia coli (TarEc), a primary attractant ligand is aspartate. Its binding to the periplasmic domain of Tar generates a conformational change that is transmitted via helix 4 transmembrane helix 2 (TM2). An inward movement of TM2 initiates a transmembrane signal to the cytoplasmic HAMP (histidine kinases, adenyl cyclases, methyl-accepting proteins, phosphatases) domain. Baseline CheA kinase-stimulating activity and ligand-induced responses are both strongly influenced by residues at the C-terminus of transmembrane helix 2 (TM2). The cytoplasmic aromatic anchor, composed of residues Trp-209 and Tyr-210 in TarEc, is of particular importance. These residues are not highly conserved among transmembrane receptors having a HAMP domain, although there are almost always some aromatic residues in this region. The question thus becomes what properties of this aromatic anchor are necessary for proper signal transduction. In this dissertation, I studied the effect on TarEc function by substituting all possible combinations of Ala, Phe, Tyr, and Trp at positions 209 and 210. This library of TarEc variants allowed the direct assessment of the effect of the residue composition of the aromatic anchor and led to a model of how the wild-type anchor maintains the base-line signaling state in TarEc. Additional receptor variants containing double aromatic tandems and Ala substitutions for the periplasmic Trp residue were created, and the aromatic residues were also shifted in position within the six residues 207-212. Trp, Tyr, and Phe, in that order, had the greatest effect on function when they were moved to novel positions. It was also discovered that Gly-211 plays a critical role in maintaining receptor function. A model was generated that proposes that Gly-211 plays a role in maintaining the flexibility of the TM2-HAMP domain connector. The results suggest that the signaling properties of the transmembrane sensor kinases of two-component systems can be predicted by the nature of their TM2-HAMP connections. It may also be possible to modulate their activity in a controlled way by manipulating the amino acid sequences that comprise those connections.
20

Molecular dynamics simulation studies of transmembrane signalling proteins

Abd Halim, Khairul Bariyyah January 2014 (has links)
Receptor tyrosine kinases (RTKs) are a major class of cell surface receptors, important in cell signalling events associated with a variety of functions. High-throughput (HTP), coarse-grained molecular dynamics (CG-MD) simulations have been used to investigate the dimerization of the transmembrane (TM) domain of selected RTKs, including epidermal growth factor receptor (EGFR) and muscle-specific kinase (MuSK). EGFR activation requires not only a specific TM dimer interface, but also a proper orientation of its juxtamembrane (JM) domain. Phosphatidylinositol 4,5-bisphosphate (PIP<sub>2</sub>) is known to abolish EGFR phosphorylation through interaction with basic residues within the JM domain. Here, a multiscale approach was used to investigate anionic lipid clustering around the TM-JM junction and how such clustering is modulated by the mutation of basic residues. The simulations demonstrated that PIP<sub>2</sub> may help stabilize the JM-A antiparallel dimer, which may in turn help stabilize TM domain helix packing of the N-terminal dimerization motif. A proximal TM domain residue has been implicated in the inhibition of ganglioside GM3 in phase-separated membranes. Here, CG simulations were used to explore the dynamic behaviour of the EGFR TM domain dimer in GM3-containing and GM3-depleted bilayers designed to resemble lipid-disordered (Ld) and phase-separated (Ld/Lo) membranes. The simulations suggest that the presence of GM3 in Ld/Lo bilayers can disrupt and destabilize the TM dimer, which helps to explain why GM3 may favour monomeric EGFR in vivo. To gain insights into the dynamic nature of the intact EGFR, a nearly complete EGFR dimer was modelled using available structural data and embedded in an asymmetric compositional complex bilayer, which resembles the mammalian plasma membrane. The results demonstrated the dynamic nature of the EGFR ectodomain and its predicted interactions with lipids in the local bilayer. Strong protein-lipid interactions, as well as lipid-lipid interactions, affect the local clustering of lipids and the diffusion of lipids in the vicinity of the protein on both leaflets.

Page generated in 0.0582 seconds