• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 278
  • 52
  • 49
  • 20
  • 15
  • 12
  • 7
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 622
  • 622
  • 622
  • 143
  • 132
  • 130
  • 114
  • 100
  • 93
  • 68
  • 67
  • 63
  • 63
  • 56
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Understanding the growth behaviour of epitaxial InAs/GaAs nanowire heterostructures using electron microscopy

Mohanchand Paladugu Unknown Date (has links)
Materials in smaller scales exhibit promising properties that are useful for wide variety of applications. Semiconductor quantum wells and quantum dots are two main examples of low-dimensional systems, where the quantum wells act as two-dimensional systems and the quantum dots act as zero-dimensional systems. Alternatively, semiconductor nanowires act as one-dimensional materials, and they exhibit promising and device applicable properties. These nanowires are relatively new class of materials compared to the quantum wells and the quantum dots. The semiconductor nanowires are expected to be the building blocks for future nanoelectronic and nano-optoelectronic device technology. Vapor-liquid-solid (VLS) mechanism is a widely used mechanism for the growth of semiconductor nanowires, where metal nanoparticles are used as the catalysts for the nanowires growth. This growth mechanism offers a flexibility to control the size, morphology and location of the semiconductor nanowires. In the VLS growth, changing the chemical composition of vapor constituents produce consequent compositional modulation in each nanowire. The compositional modulation along the nanowire axis produces axial nanowire heterostructures and in radial direction produces radial nanowire heterostructures. Such compositional modulation within an individual nanowire enables the designing of band structure of a nanowire and thereby allows the fabrication of single nanowire devices. These nanowire heterostructures show many potential properties and consequent applications. Although the semiconductor nanowire heterostructures are promising semiconductor nanostructures, the fundamental growth mechanisms of axial and radial nanowire heterostructures have not been explored sufficiently due to their complex nature of the growth. In this regard, this PhD thesis addresses the fundamental issues associated with axial and radial nanowire heterostructures. For such fundamental investigations, this PhD work chooses InAs/GaAs nanowire heterostructure system due to its potential applications. In fact, InAs/GaAs nanowire heterostructures are the first reported axial nanowire heterostructure system. However, no detailed investigations were reported on this system so far. The detailed nucleation and growth mechanisms associated with InAs/GaAs nanowire heterostructure system are explored in this thesis using electron microscopy investigations. This objective is achieved in the following steps. • InAs/GaAs nanowire heterostructures are grown using Au nanoparticles and metal-organic chemical vapor deposition (MOCVD) method. To determine the axial and radial growth evolution of InAs on GaAs nanowires, different InAs/GaAs nanowire heterostructures are produced by depositing InAs for different durations on GaAs nanowires. The GaAs nanowires are initially grown for 30 min and then the InAs is deposited on these nanowires for 1, 3, 5 and 30 min. • These InAs/GaAs nanowire heterostructures are subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. These investigations determine that, in the initial stages of the InAs axial growth (1 min), the Au particles move sidewards and subsequently downwards by maintaining an interface with the GaAs nanowire. Such a movement of Au catalysts is attributed to lower Au/GaAs interfacial energy than Au/InAs. The detailed TEM investigations show that this Au movement depends upon the crystallographic nature of the GaAs nanowire. The Au particle is always tend to move towards {112}B sidewall of the GaAs nanowire rather than its {112}A sidewalls. Increase in InAs growth duration shows that InAs branches evolve from GaAs-InAs core-shell structures. Such evolution is observed in following steps: (1) the movement of Au particle terminates when it encounters the radially grown InAs on GaAs nanowires; (2) further growth of InAs leads to the InAs nanowire growth from those terminated Au nanoparticles in the form of branches. • The TEM observations of InAs/GaAs nanowire heterostructures show that, in the initial stages of InAs radial growth on GaAs nanowires, InAs nucleates preferentially in the concave regions of the non-planar sidewalls of the GaAs nanowire. The further growth of InAs leads to the preferential formation of InAs shell structure at the regions of concave regions. Such heterogeneous formation of shell structure resembles InAs nanoring structures around GaAs nanowire cores. InAs growth on the planar {112} sidewalls of GaAs nanowires with hexagonal cross sections shows different growth phenomena to the above described InAs nanorings formation. In this case, InAs preferentially nucleates on {112}A sidewalls of the GaAs nanowires and with further deposition of InAs, the complete shell structure of InAs form with {110} sidewalls on the GaAs nanowire cores. • In addition to the above mentioned investigations, to observe the growth evolution of GaAs on InAs nanowires, GaAs is grown for 3 and 30 min on InAs nanowires. The TEM investigations of these nanostructures show that the axial GaAs/InAs hetero-interface contains an InGaAs transition segment in contrast to the sharp InAs/GaAs (InAs on GaAs) hetero-interface. The different nature of hetero-interfaces is attributed to the different affinities between Au catalysts and Ga or In. The radial growth of GaAs on InAs nanowires show that the GaAs shell has grown in wurtzite structure around the wurtzite structured InAs nanowire cores. Overall, through the extensive SEM and TEM investigations, this PhD thesis addresses the fundamental issues related to the growth of axial and radial nanowire heterostructures. Such fundamental investigations are expected to advance the processing and application prospective of the semiconductor nanowires and their associated heterostructures.
232

Understanding the growth behaviour of epitaxial InAs/GaAs nanowire heterostructures using electron microscopy

Mohanchand Paladugu Unknown Date (has links)
Materials in smaller scales exhibit promising properties that are useful for wide variety of applications. Semiconductor quantum wells and quantum dots are two main examples of low-dimensional systems, where the quantum wells act as two-dimensional systems and the quantum dots act as zero-dimensional systems. Alternatively, semiconductor nanowires act as one-dimensional materials, and they exhibit promising and device applicable properties. These nanowires are relatively new class of materials compared to the quantum wells and the quantum dots. The semiconductor nanowires are expected to be the building blocks for future nanoelectronic and nano-optoelectronic device technology. Vapor-liquid-solid (VLS) mechanism is a widely used mechanism for the growth of semiconductor nanowires, where metal nanoparticles are used as the catalysts for the nanowires growth. This growth mechanism offers a flexibility to control the size, morphology and location of the semiconductor nanowires. In the VLS growth, changing the chemical composition of vapor constituents produce consequent compositional modulation in each nanowire. The compositional modulation along the nanowire axis produces axial nanowire heterostructures and in radial direction produces radial nanowire heterostructures. Such compositional modulation within an individual nanowire enables the designing of band structure of a nanowire and thereby allows the fabrication of single nanowire devices. These nanowire heterostructures show many potential properties and consequent applications. Although the semiconductor nanowire heterostructures are promising semiconductor nanostructures, the fundamental growth mechanisms of axial and radial nanowire heterostructures have not been explored sufficiently due to their complex nature of the growth. In this regard, this PhD thesis addresses the fundamental issues associated with axial and radial nanowire heterostructures. For such fundamental investigations, this PhD work chooses InAs/GaAs nanowire heterostructure system due to its potential applications. In fact, InAs/GaAs nanowire heterostructures are the first reported axial nanowire heterostructure system. However, no detailed investigations were reported on this system so far. The detailed nucleation and growth mechanisms associated with InAs/GaAs nanowire heterostructure system are explored in this thesis using electron microscopy investigations. This objective is achieved in the following steps. • InAs/GaAs nanowire heterostructures are grown using Au nanoparticles and metal-organic chemical vapor deposition (MOCVD) method. To determine the axial and radial growth evolution of InAs on GaAs nanowires, different InAs/GaAs nanowire heterostructures are produced by depositing InAs for different durations on GaAs nanowires. The GaAs nanowires are initially grown for 30 min and then the InAs is deposited on these nanowires for 1, 3, 5 and 30 min. • These InAs/GaAs nanowire heterostructures are subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. These investigations determine that, in the initial stages of the InAs axial growth (1 min), the Au particles move sidewards and subsequently downwards by maintaining an interface with the GaAs nanowire. Such a movement of Au catalysts is attributed to lower Au/GaAs interfacial energy than Au/InAs. The detailed TEM investigations show that this Au movement depends upon the crystallographic nature of the GaAs nanowire. The Au particle is always tend to move towards {112}B sidewall of the GaAs nanowire rather than its {112}A sidewalls. Increase in InAs growth duration shows that InAs branches evolve from GaAs-InAs core-shell structures. Such evolution is observed in following steps: (1) the movement of Au particle terminates when it encounters the radially grown InAs on GaAs nanowires; (2) further growth of InAs leads to the InAs nanowire growth from those terminated Au nanoparticles in the form of branches. • The TEM observations of InAs/GaAs nanowire heterostructures show that, in the initial stages of InAs radial growth on GaAs nanowires, InAs nucleates preferentially in the concave regions of the non-planar sidewalls of the GaAs nanowire. The further growth of InAs leads to the preferential formation of InAs shell structure at the regions of concave regions. Such heterogeneous formation of shell structure resembles InAs nanoring structures around GaAs nanowire cores. InAs growth on the planar {112} sidewalls of GaAs nanowires with hexagonal cross sections shows different growth phenomena to the above described InAs nanorings formation. In this case, InAs preferentially nucleates on {112}A sidewalls of the GaAs nanowires and with further deposition of InAs, the complete shell structure of InAs form with {110} sidewalls on the GaAs nanowire cores. • In addition to the above mentioned investigations, to observe the growth evolution of GaAs on InAs nanowires, GaAs is grown for 3 and 30 min on InAs nanowires. The TEM investigations of these nanostructures show that the axial GaAs/InAs hetero-interface contains an InGaAs transition segment in contrast to the sharp InAs/GaAs (InAs on GaAs) hetero-interface. The different nature of hetero-interfaces is attributed to the different affinities between Au catalysts and Ga or In. The radial growth of GaAs on InAs nanowires show that the GaAs shell has grown in wurtzite structure around the wurtzite structured InAs nanowire cores. Overall, through the extensive SEM and TEM investigations, this PhD thesis addresses the fundamental issues related to the growth of axial and radial nanowire heterostructures. Such fundamental investigations are expected to advance the processing and application prospective of the semiconductor nanowires and their associated heterostructures.
233

Understanding the growth behaviour of epitaxial InAs/GaAs nanowire heterostructures using electron microscopy

Mohanchand Paladugu Unknown Date (has links)
Materials in smaller scales exhibit promising properties that are useful for wide variety of applications. Semiconductor quantum wells and quantum dots are two main examples of low-dimensional systems, where the quantum wells act as two-dimensional systems and the quantum dots act as zero-dimensional systems. Alternatively, semiconductor nanowires act as one-dimensional materials, and they exhibit promising and device applicable properties. These nanowires are relatively new class of materials compared to the quantum wells and the quantum dots. The semiconductor nanowires are expected to be the building blocks for future nanoelectronic and nano-optoelectronic device technology. Vapor-liquid-solid (VLS) mechanism is a widely used mechanism for the growth of semiconductor nanowires, where metal nanoparticles are used as the catalysts for the nanowires growth. This growth mechanism offers a flexibility to control the size, morphology and location of the semiconductor nanowires. In the VLS growth, changing the chemical composition of vapor constituents produce consequent compositional modulation in each nanowire. The compositional modulation along the nanowire axis produces axial nanowire heterostructures and in radial direction produces radial nanowire heterostructures. Such compositional modulation within an individual nanowire enables the designing of band structure of a nanowire and thereby allows the fabrication of single nanowire devices. These nanowire heterostructures show many potential properties and consequent applications. Although the semiconductor nanowire heterostructures are promising semiconductor nanostructures, the fundamental growth mechanisms of axial and radial nanowire heterostructures have not been explored sufficiently due to their complex nature of the growth. In this regard, this PhD thesis addresses the fundamental issues associated with axial and radial nanowire heterostructures. For such fundamental investigations, this PhD work chooses InAs/GaAs nanowire heterostructure system due to its potential applications. In fact, InAs/GaAs nanowire heterostructures are the first reported axial nanowire heterostructure system. However, no detailed investigations were reported on this system so far. The detailed nucleation and growth mechanisms associated with InAs/GaAs nanowire heterostructure system are explored in this thesis using electron microscopy investigations. This objective is achieved in the following steps. • InAs/GaAs nanowire heterostructures are grown using Au nanoparticles and metal-organic chemical vapor deposition (MOCVD) method. To determine the axial and radial growth evolution of InAs on GaAs nanowires, different InAs/GaAs nanowire heterostructures are produced by depositing InAs for different durations on GaAs nanowires. The GaAs nanowires are initially grown for 30 min and then the InAs is deposited on these nanowires for 1, 3, 5 and 30 min. • These InAs/GaAs nanowire heterostructures are subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. These investigations determine that, in the initial stages of the InAs axial growth (1 min), the Au particles move sidewards and subsequently downwards by maintaining an interface with the GaAs nanowire. Such a movement of Au catalysts is attributed to lower Au/GaAs interfacial energy than Au/InAs. The detailed TEM investigations show that this Au movement depends upon the crystallographic nature of the GaAs nanowire. The Au particle is always tend to move towards {112}B sidewall of the GaAs nanowire rather than its {112}A sidewalls. Increase in InAs growth duration shows that InAs branches evolve from GaAs-InAs core-shell structures. Such evolution is observed in following steps: (1) the movement of Au particle terminates when it encounters the radially grown InAs on GaAs nanowires; (2) further growth of InAs leads to the InAs nanowire growth from those terminated Au nanoparticles in the form of branches. • The TEM observations of InAs/GaAs nanowire heterostructures show that, in the initial stages of InAs radial growth on GaAs nanowires, InAs nucleates preferentially in the concave regions of the non-planar sidewalls of the GaAs nanowire. The further growth of InAs leads to the preferential formation of InAs shell structure at the regions of concave regions. Such heterogeneous formation of shell structure resembles InAs nanoring structures around GaAs nanowire cores. InAs growth on the planar {112} sidewalls of GaAs nanowires with hexagonal cross sections shows different growth phenomena to the above described InAs nanorings formation. In this case, InAs preferentially nucleates on {112}A sidewalls of the GaAs nanowires and with further deposition of InAs, the complete shell structure of InAs form with {110} sidewalls on the GaAs nanowire cores. • In addition to the above mentioned investigations, to observe the growth evolution of GaAs on InAs nanowires, GaAs is grown for 3 and 30 min on InAs nanowires. The TEM investigations of these nanostructures show that the axial GaAs/InAs hetero-interface contains an InGaAs transition segment in contrast to the sharp InAs/GaAs (InAs on GaAs) hetero-interface. The different nature of hetero-interfaces is attributed to the different affinities between Au catalysts and Ga or In. The radial growth of GaAs on InAs nanowires show that the GaAs shell has grown in wurtzite structure around the wurtzite structured InAs nanowire cores. Overall, through the extensive SEM and TEM investigations, this PhD thesis addresses the fundamental issues related to the growth of axial and radial nanowire heterostructures. Such fundamental investigations are expected to advance the processing and application prospective of the semiconductor nanowires and their associated heterostructures.
234

Defects in silicon-germanium strained epitaxial layers.

Dynna, Mark. Weatherly, G.C. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1993. / Source: Dissertation Abstracts International, Volume: 55-06, Section: B, page: 2345. Adviser: G. C. Weatherly.
235

Residual stress in CVD coatings : Evaluation of XRD and TEM methods for micro and macrostress determination

Karlsson, Dennis January 2015 (has links)
Cutting tools are subject to extreme environment during processing, with hightemperatures and pressures. CVD coatings are used to increase lifetime andperformance of the WC/Co composite. Residual stresses in the coatings areinteresting as they may be destructive or constructive for the material duringoperation. Blasting is used to change the as-deposited tensile stress to compressive.The usefulness of X-ray diffraction (XRD) and nanobeam diffraction (NBD) forcharacterization of strains in the different coating layers has been investigated. XRDwith different anode materials has been used to determine the macrostress in thelayers and an attempt was done to calculate the average microstrain and crystallitesize. NBD was used to study the microstrain within single grains of the differentmaterials. A specimen preparation method has been developed for the studiedsamples using the FIB.The XRD analysis shows that the measurement condition is of great importanceduring stress measurements. The macrostress of the different samples show that theZrCN type coating is less stressed than the TiCN type coating after deposition. It isalso shown that the ZrCN type coating is less affected by the blasting. Determinationof microstrain and crystallite size from XRD needs further development.The NBD is a good method to evaluate microstrain within single grains, or betweengrains oriented in the same zone axis. The analyses show more strain within thegrains after blasting. The measurements indicate more strain variation in the Al2O3layer in the TiCN system compared to the ZrCN system.
236

Carbon Ion Implanted Silicon for Schottky Light-Emitting Diodes

2015 October 1900 (has links)
Research in the field of Photonics is in part, directed at the application of light-emitting materials based on silicon platforms. In this work silicon wafers are modified by carbon ion implantation to incorporate silicon carbide, a known light-emitting material. Ion beam synthesis treatments are applied with implant energy of 20 keV, and ion fluences of 3, 5 and 10 × 1016 ions/cm2 at both ambient temperature and high temperature (400 °C). The samples are annealed at 1000 °C, after implantation. The carbon ion implanted silicon is characterized using Raman and Fourier transform infrared spectroscopic techniques, grazing-incidence X-ray diffraction, transmission electron microscopy and electron energy loss spectroscopy. The materials are observed to have a multilayer structure, where the ambient temperature implanted materials have an amorphous silicon layer, and an amorphous silicon layer with carbon-rich, nanoscale inclusions. The high temperature implanted materials have the same layers, with an additional polycrystalline Si layer at the interface between the implanted layer and the target substrate and the amorphous Si layer with SiC inclusions is reduced in thickness compared to the ambient temperature samples. The carbon-rich inclusions are confirmed to be SiC, with no evidence of carbon clusters in the materials observed using Raman spectroscopy. The carbon ion-implanted material is used to fabricate Schottky diodes having a semitransparent gold contact at the implanted surface, and an aluminum contact on the opposite side. The diodes are tested using current-voltage measurements between -12 and +15 V. No reverse breakdown is observed for any of the diodes. The turn-on voltages for the ambient temperature implanted samples are 2.6±0.1 V, 2.8±0.6 V and 3.9±0.1 V for the 3, 5 and 10 × 1016 ions/cm2 samples, respectively. For the high temperature implanted samples, the turn-on voltages are 3.2±0.1 V, 2.7±0.1 V, and 2.9±0.4 V for the implanted samples with same fluences. The diode curves are modeled using the Shockley equation, and estimates are made of the ideality factor of the diodes. These are 188±16, 224.5±5.8, and 185.4±9.2 for the ambient temperature samples, and 163.6±6.3, 124.3±5.3, and 333±12 for the high temperature samples. The high ideality factor is associated with the native oxide layer on the silicon substrate and with the non-uniform, defect-rich implanted region of the carbon ion implanted silicon. Red-orange visible light emission from the diodes is observed with voltage greater than the turn-on voltage applied across the diodes. The luminescence for the ambient temperature samples is attributed to porous silicon, and amorphous silicon. The high temperature implanted samples show luminescence associated with porous silicon, nanocrystalline silicon carbide, and defects in silicon related to ion implantation. The luminescent intensity observed for the ambient temperature samples is higher than for the high temperature samples. The dominant luminescence feature in the carbon ion-implanted silicon material is porous silicon, which is described by quantum confinement of excitons in silicon.
237

Analise microestrutural de telureto de chumbo obtido por crescimento epitaxial

HWANG, MIRIAM K. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:44:29Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:27Z (GMT). No. of bitstreams: 1 06872.pdf: 4167574 bytes, checksum: 52f6a850bb9e5261861d1ba84fb83a28 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
238

A study of the coefficient of thermal expansion of nuclear graphites

Hacker, Paul John January 2001 (has links)
No description available.
239

Molecular architecture of Caveolin-3 and the investigation of an interaction with the ryanodine receptor

Whiteley, Gareth January 2012 (has links)
The muscle-specific membrane protein, Caveolin-3, is a building block of caveolae a type of specialised lipid raft. Caveolin-3 is proposed to play a central role in variety of cellular functions both structural and functional, from cell signalling to cholesterol homeostasis. Caveolin-3 has also been implicated in processes involved in targeting membrane proteins to the plasma membrane, as well as mediating a host of cell signalling processes. Initial attempts were made to express full-length Caveolin-3 in E.coli. However, more success was achieved in expressing and purifying domains of Caveolin-3. To produce purified full-length Caveolin-3 the baculovirus expression system was employed and we report here that the expression of Caveolin-3 in insect (Sf9) cells leads to the formation of caveolae comparable in size to those observed in native vesicles. We subsequently purified the recombinant Caveolin-3 and determined, using multi-angle laser light scattering, that the isolated protein forms an oligomer with a molecular mass of ~200-220kDa. Using negative-stain transmission electron microscopy in conjunction with single particle analysis we have determined the first three-dimensional structure for Caveolin-3 with data converging to suggest that it forms a nonamer. The 9-fold symmetric three-dimensional Caveolin-3 volume is toroidal, ~16.5nm in diameter and 5.5nm thick, and is characterised by an outer rim of protein connected to a central 'cone-shaped' domain. Labelling studies revealed that the C-terminal domain of each of the contributing Caveolin-3 monomers associate to form the central cone density. There is also evidence to suggest that Caveolin-3 is associated with a range of proteins involved in excitation-contraction coupling. Having identified multiple potential caveolin-binding motifs within the Ryanodine Receptor, one of the key protein components of excitation-contraction coupling, we have purified the skeletal isoform of the Ryanodine Receptor (Ryanodine Receptor-1) from sheep calf muscle and using several biophysical techniques probed whether there is an interaction between Caveolin-3 and Ryanodine Receptor-1. Co-immunoprecipitation experiments indicated that the two proteins do indeed interact, but functional studies for analysis of binding characteristics were inconclusive. In conclusion, this thesis describes both the successfully purification and structural determination of Caveolin-3, generating the first 3D data for any of the caveolin proteins, as well as work aimed at understanding its functional relationship with Ryanodine Receptor-1.
240

Développement de méthodes d’analyse d’images dédiées à la caractérisation morphologique et nano structurale des noirs de carbone dans les matrices polymères / Images processing dedicated to the morphological and nano structural characterization of carbon blacks in polymer matrices

Luengo, Lydie 03 March 2017 (has links)
Pour la confection des matériaux polymères à base de caoutchouc, le noir de carbone (NC) reste la charge renforçante la plus utilisée. Sa caractérisation morphologique et nano structurale est essentielle dans la maitrise des propriétés physico-chimiques qu’il confère aux matériaux auxquels il est mélangé. Les analyses classiques ne permettent d’accéder que de façon indirecte et incomplète à ces propriétés. Cette thèse propose une méthode de caractérisation innovante par le couplage d’un détecteur STEM (Scanning Transmission Electron Microscopy) et d’une chaine d’analyse d’images complètement automatique pour identifier les types de NC. Une étude statistique approfondie d’une centaine de caractéristiques morphologiques et structurales des NC a été réalisée sur les 6000 images STEM acquises. Cette étude a permis d’introduire 7 nouveaux descripteurs et de sélectionner les 37 descripteurs les plus discriminants pour la création du modèle d’identification. Pour rendre le processus le plus automatique possible, un algorithme de segmentation non supervisé a été développé et évalué. Cinq classifieurs ont ensuite été entraînés et comparés sur une base de près de 65000 agrégats. Le modèle le plus adapté s’avère les réseaux de neurones avec une identification des NC avoisinant les 100%. L’identification étant réalisée à partir de projections 2D des agrégats via les images STEM, une confrontation statistique valide la capacité des descripteurs 2D à caractériser la structure tridimensionnelle des NC observée par tomographies électroniques. L'approche complète proposée, depuis le protocole de préparation des échantillons et l'acquisition d'images STEM jusqu'à leur classification en passant par les étapes d'analyse d'images, offre une nouvelle méthode de caractérisation fiable des NC (à l’état natif ou au sein de mélanges élastomères) exploitable en routine. / In the field of rubber material development, CB is the most commonly used reinforcing filler. The characterization of CB morphology and nanostructure is therefore crucial to understand the physicochemical properties induced by the introduction of CB in rubber materials. Classical analytical methods only allow indirect and incomplete access to these properties. This PhD offers an innovative method that allows the automatic identification of CB grades by coupling Scanning Transmission Electron Microscopy (STEM) detector and image processing chain. A thorough statistical investigation over a hundred of morphological and structural characteristics of CB was performed on a set of 6000 STEM images. This study has introduced 7 new features and selected the 37 most discriminating descriptors to create the final model. An unsupervised segmentation algorithm has been developed and evaluated in order to build an automatic process as efficient as possible. Then, five classifiers were trained and compared on a base of nearly 65,000 aggregates. It appears that the most suitable descriptor is the Neuron networks as it gives a perfect recognition. As the recognition model is based on 2D projections of CB aggregates, it is necessary to verify that the chosen descriptors are indeed able to correctly characterize the three dimensional structure of CB. The statistical comparison of the 2D descriptors with 3D descriptors extracted from electronic tomography images has been successful, and therefore demonstrates the relevance of the model. The proposed approach, starting from the sample preparation and STEM acquisitions to their classification and through the image analysis steps, offers a new and innovative method for the reliable characterization of CB. This method can be used routinely on raw CB or CB extracted from vulcanizes rubbers.

Page generated in 0.1028 seconds