Spelling suggestions: "subject:"transparent tests"" "subject:"transparent desta""
1 |
Functional characterization of WIP transcription factors in Arabidopsis thaliana / Caractérisation de facteurs de transcription WIP chez Arabidopsis thalianaIzhaq, Farhaj 09 April 2014 (has links)
Le déterminisme du sexe est un processus qui aboutit à la séparation physique des structures à l’origine des gamètes mâles et femelles, soit sur des fleurs séparées sur une même plante, pour les espèces monoïques, soit sur des individus séparés, dans le cas des espèces dioïques. Ce mécanisme favorise la fécondation croisée et augment ainsi la variabilité génétique. Il pourrait être influencé par les facteurs endogène (génétique ou hormonal) ou environnementaux. Chez le melon, le déterminisme du sexe est contrôlé par le gène A (andromonoecious) et le gène G (gynoecious). Le gène A code pour 1-aminocyclopropane-1-carboxylique acide synthase (ACS), un enzyme impliqué dans la voie de biosynthèse d’éthylène qui inhibe le développement des étamines dans les fleurs femelles. Le gène G code pour une protéine C2H2 à doigt de zinc appartenant à la famille WIP de facteurs de transcription qui inhibe le développement des capelles dans les fleurs mâles. Chez Arabidopsis thaliana, Il y a six gènes WIP et on en sait très peu sur leur fonction moléculaire. TT1/AtWIP1 est impliqué à l’accumulation de PA dans endothélium de graines. NTT/AtWIP2 est impliqué dans le développement de TRANSMITTING TRACT de carpelle. Dans cette thèse, nous avons essayé de mettre en évidence la fonction moléculaire de gènes WIP. Dans cette étude, nous avons montré que les gènes WIP des espèces différents partiellement restaurent le phénotype de graines jaune de tt1-3 mutants et régulent positivement les gènes tardifs de biosynthèse de flavonoïdes chez Arabidopsis thaliana La complémentation fonctionnelle de mutants tt1-3 par le gène WIP de melon et le gène WIP de la mousse montre que les gènes WIP ont la même fonction globale mais diffèrent à l’échelle spatio-temporelle. Il a été montré que le second motif conservé, à l’extrémité N-terminal, du gène TT1 était essentiel pour qu’il soit fonctionnel. La substitution d’acides aminés de ce motif (N2) par des alanines diminue l’accumulation de proanthocyanidines (PA) dans l’endothélium de la graine. TT1 perturbe également le développement des pétales, des étamines et des carpelles quand il est surexprimé de manière ectopique sous le contrôle des promoteurs d’AP3 et CRC. Il a été exprimé dans les racines secondaires sous le promoteur du gène SOLITARY ROOT (SLR/IAA14) ainsi que dans les stipules sous le promoteur du gène GLABROUS1 (GL1). TT1 inhibe le développement des racines secondaires et la formation des trichomes sur les feuilles. Dans cette étude, nous avons constaté que TT1 agit comme un inhibiteur de la formation d’organes quand il est exprimé de manière ectopique. On cherchera dans cette étude à comprendre les mécanismes mis en jeu lors de l’arrêt du développement de ces organes au cours du déterminisme du sexe et a évoqué de nouvelles pistes pour expliquer ce processus. / Sex determination in plants is a process that results the development of either male or female flower on the same or different individuals. This mechanism enhances the cross pollination and raises the genetic variability. It can be influenced by endogenous (genetic or hormonal) and/or external environmental factors. In melon, gene A arrests the stamen development in the female flowers and gene G arrests the development of carpel in the male flowers hence these two genes control the sex determination mechanism in melon. Gene A encodes 1-aminocyclopropane-1-carboxylic acid synthase (ACS), an enzyme which is involved in the ethylene biosynthesis pathway. Gene G encodes a C2H2 zinc finger proteins that belongs to WIP family of transcription factors. In Arabidopsis thaliana, there are six WIP genes and very little is known about their molecular function. TT1/AtWIP1 is involved in the accumulation of PA in the seed endothelium. NTT/AtWIP2 is involved in the development of transmitting tract in the carpel. In this thesis, we tried to highlight the molecular function of the WIP genes. Here we show that WIP genes from different species partially restore the yellow seed coat color phenotype of tt1-3 mutant and upregulate the late flavonoid biosynthetic genes. The functional complementation of tt1-3 mutants by WIPs from Cucumis melo and Physcomitrella patens indicates that WIP genes have the same global function but differ on the spatio-temporal level. Second conserved motif in the N-terminus of TT1 protein was found to be essential for its proper function as alanine scanning of N2 motif of TT1 decreased the accumulation of PAs in the seed endothelium. TT1 disturbed the development of petals, stamens and carpels in flower when ectopically expressed under AP3 and CRC promoter. TT1 was expressed in the lateral roots under the promoter of SOLITARY ROOT (SLR/IAA14) and in the stipules under the promoter of GLABROUS1 (GL1). TT1 was able to inhibit the development of the lateral roots and leaf trichomes. In this study, we found that TT1 can act as organ inhibitor when ectopically expressed. Our study will help us to understand the organ arrest during sex determination mechanism and will evoke new dimensions for further explanations of this process.
|
2 |
Deciphering the regulatory network controlling flavonoid biosynthesis by MYB-bHLH-WDR complexes in Arabidopsis seed / Caractérisation du réseau de régulation contrôlant la biosynthèse des flavonoïdes et impliquant des complexes MYB-bHLH-WDR dans la graine d'ArabidopsisXu, Wenjia 15 September 2014 (has links)
Le contrôle combinatoire de l’ expression des gènes est une caractéristique importante du profil spatio-temporel de l'accumulation des flavonoïdes chez les plantes. Des résultats précédents avaient démontré chez Arabidopsis thaliana, que la régulation de l’accumulation des anthocyanes et des proanthocyanidines repose sur l'activité de facteurs de régulation de la transcription de type R2R3-MYB et bHLH qui forment des complexes ternaires ("MBW") avec la protéine TTG1 (WDR). L'objectif de la thèse était de caractériser les complexes MBW impliqués et leurs cibles, pour avoir une compréhension globale des mécanismes transcriptionnels qui contrôlent la biosynthèse des flavonoïdes.En utilisant différentes approches génétiques et moléculaires, nous avons montré que seuls les gènes « tardifs » (c’est à dire DFR, LDOX, BAN, TT19, TT12 et AHA10) sont des cibles directes des complexes MBW. Bien que le complexe de régulation impliquant les protéines TT2-TT8-TTG1 ait un rôle majeur dans la régulation de ces gènes structuraux dans la graine d’Arabidopsis, trois autres complexes contenant MYB5, GL3 ou EGL3 sont également impliqués de façon tissu-spécifique. Comme l’expression du gène TT8 joue un rôle clef dans ces régulations, une dissection fonctionnelle de son promoteur a été entreprise. Elle a montré la nature modulaire de ce promoteur avec deux domaines impliqués dans l’expression tissu-spécifique et un troisième dans la force du promoteur. Les résultats obtenus suggèrent également l’existence d’autres régulateurs qui restent à caractériser. Enfin, nous avons développé une nouvelle technique de caractérisation des interactions entre les facteurs de transcription et les promoteurs, basée sur l’expression transitoire dans des protoplastes de mousse (i.e. Physcomitrella patens). Nous avons ainsi pu identifier les éléments cis des promoteurs impliqués dans la régulation de l’expression de TT8 et de chacun des promoteurs cibles des complexes MBW.L’ensemble de ces travaux permet de fournir un modèle plus complet du réseau de régulations transcriptionnelles qui contrôle la biosynthèse des proanthocyanidines et des anthocyanes, ainsi que des outils et de nouvelles pistes pour poursuivre ces études chez Arabidopsis et d’autres plantes. / The combinatorial control of gene expression is a key feature of the spatio-temporal pattern of flavonoid accumulation in plants. Previous results have shown that the regulation of anthocyanins and proanthocyanidins (PAs or tannins) pigmentation relies on the transcriptional activity of R2R3-MYB and bHLH proteins that form “MBW” ternary complexes with TTG1 (WD-Repeats), in Arabidopsis thaliana. The purpose of the thesis was to figure out the nature and spatio-temporal activity of these MBW complexes and to identify their direct targets, which were essential steps toward a comprehensive understanding of the transcriptional mechanisms that control flavonoid biosynthesis. Using different molecular and genetic approaches this thesis has demonstrated that only late biosynthetic genes (namely DFR, LDOX, BAN, TT19, TT12 and AHA10) are direct targets of the MBW complexes. Interestingly, although the TT2-TT8-TTG1 complex was shown to play the major role in regulating the expression of these structural genes in developing seeds, three additional MBW complexes that contain MYB5, GL3 or EGL3 are also involved, in a tissue-specific manner. Because the expression of TT8 is largely involved in these regulations, a functional dissection of its promoter was carried out. Two modules drive the tissue-specific activity of the TT8 promoter in PA- and anthocyanin-accumulating cells, and a third module is responsible for the strength of the promoter. Interestingly, this regulation involves at least six different MBW complexes. Our results also suggest that some putative new regulators remain to be discovered. Last, use of a newly developed fast and sensitive transient expression system that relies on protoplasts of the moss Physcomitrella patens has allowed the identification of both, specific cis-regulatory elements through which TT8 expression is regulated and the minimal promoter for each of the genes that are targeted by the MBW complexes.Altogether, by answering fundamental questions and by demonstrating or invalidating previously made hypotheses, we have provided a new and comprehensive view of the regulatory mechanisms controlling PA and anthocyanin biosynthesis in Arabidopsis, as well as new clues and tools for further investigation of this pathway in Arabidopsis and other plant species.
|
Page generated in 0.0901 seconds