• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 2
  • Tagged with
  • 45
  • 45
  • 21
  • 21
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Non-motorised school travel planning: development, demonstration and evaluation of a 'walking bus' initiative at selected schools in Cape Town

Muchaka, Patrick January 2012 (has links)
This dissertation reports upon research conducted at selected primary schools in Cape Town between 2010 and 2011 aimed at developing, implementing and evaluating the impacts of a non- motorised school travel intervention in the local context. The literature review conducted situated the current interest in active travel modes in the context of concerns over declining child independent mobility. 'Walking buses' were identified as the most appropriate intervention to address the child mobility concerns identified in the city. A 'walking bus' is a group of children who walk to school along a set route, supervised by adult volunteers. As part of data collection for the research, three school travel surveys were conducted using self-completion questionnaires. The first two surveys (n=1,784) were conducted at selected schools in 2010 in two neighbourhoods (Rondebosch and Delft) and were aimed at gaining insights into current learner travel behaviour and collecting the data required to implement 'walking buses'. The third survey (n=984) was conducted in 2010 and 2011, amongst schoolchildren aged 7-15 years, and their parents, and was aimed at exploring child independent mobility in the context of Cape Town and its hinterland. Key findings from the three surveys are discussed in terms of how independently mobile children are, how this varies according to neighbourhood and parent's willingness to let children use 'walking buses'. It was found that independent mobility varied considerably between wealthy and poor households, and across age and gender. Children from poorer households were heavily reliant on walking (88% share of school trips) while children from wealthier households were heavily reliant on cars (87% share of school trips). Parental interest was found to be sufficiently high to make 'walking buses' a viable intervention in both lower- and higher-income neighbourhoods. 'Walking buses' were subsequently implemented, and in the case of Rondebosch, evaluated using qualitative interviews with some of the participating children (n=16) and their parents (n=14). Key findings from the qualitative interviews are discussed in terms of learner travel behaviour prior to, and after, the setting up of 'walking buses', and insights into the impacts of 'walking buses'. The evaluation findings suggest that while scheduled 'walking buses' may be established with considerable levels of support and enthusiasm from parents and schools, they are difficult to sustain over the longer term. The dissertation concludes with a discussion on the tension between child independent mobility and 'walking buses', and implications of the findings for municipalities and schools wishing to promote greater use of walking for school travel.
42

Assessing the transportation of liquid fuels in South Africa using multi-criteria decision analysis: a conceptual framework and case study

Coelho, Marco January 2016 (has links)
With the recent unprecedented growth of many African economies, infrastructure investment has been flooding into the continent. Two key areas experiencing large growth in infrastructure development are the transport and energy sectors. This trend also continues to hold true in the South African development framework. The theme of this thesis encompasses both subjects of energy and transportation infrastructure which feature prominently in the countries development plans. When energy is discussed in South Africa, it is usually in the context of power generation and electricity distribution. This study focuses on another key component of the energy sector in the form of liquid fuel. Most of this energy is consumed for transportation purposes. The energy consumption of the transport sector in South Africa is large, totalling around 28% of Total Final Consumption (TFC) in the national energy balances. The bulk of this energy demand (97%) is in the form of liquid fuels, accounting for 84% of the national liquid fuel demand. This thesis focusses on the investigation of a Multi Criteria Decision Analysis (MCDA) model, which can be used to aid decision makers in the planning and assessment of liquid fuel transportation projects. A key feature of this thesis is the incorporation of a stochastic analysis in the MCDA model. There are two key motivations for assimilating a stochastic analysis in this investigation. The first one is the evaluation of incorporating such an analysis in an MCDA, as opposed to a more traditional sensitivity analysis. The second motivation is to assess the value of employing stochastic analysis as an input method for analysing a decision problem, where comprehensive field data can be substituted for a relevant range of simulated data. This thesis proposes a model which integrates the MCDA and stochastic analysis in the hope that it would provide a faster and more cost effective alternative for assessing certain liquid fuel transportation problems.
43

Transportní studie in vitro na 2D a 3D buněčné úrovni / Transport studies in vitro on 2D and 3D cellular level

Urbanová, Johana January 2017 (has links)
in Hradec Králové Student: Johana Urbanová Supervisor: PharmDr. Jana Mandíková, Ph.D. = 38.02 μM), lowest indometacin μM
44

Empirical Estimation of a Macroscopic Fundamental Diagram (MFD) for the City of Cape Town Freeway Network

Rammutla, John Koketso 26 February 2021 (has links)
The City of Cape Town is the most congested city in South Africa, with Johannesburg coming in second. Capetonians are spending 75% more time in traffic because of the congestion during peak hours, thus reducing time spent on leisure and other activities. Due to population growth, increasing car ownership and declining capacity of rail infrastructure, Cape Town's road infrastructure will continue to be under severe pressure if the status quo is maintained. Research shows that congestion levels in urban areas are key factors in determining the effectiveness and productivity of the transport system. Traffic congestion poses a threat to the economy and the environment. Increasing corridors' capacity by increasing the number of lanes does not necessarily solve the problem. Effective urban traffic management and efficient utilization of existing infrastructure are critical in creating sustainable solutions to congestion problems. To achieve this, it is important that appropriate urban-scale models and monitoring strategies are put in place. Effective traffic management and monitoring strategies require accurate characterization of the traffic state of an urban-scale network. Several approaches, including kinetic wave theory and cell transmission models or macroscopic traffic simulation models, have been proposed and developed to describe the traffic state of an urban-scale network. However, these approaches are limited and require significant amounts of computational time and effort. The application of macroscopic fundamental diagram (herein referred to as MFD) to characterize the state of an urban-scale network has thus far proven to be more effective than other approaches. MFD represents the state of urban traffic by defining the traffic throughput of an area at given traffic densities. It describes the characteristics and dynamics of urban-scale traffic conditions, allowing for improved and sustainable urban scale traffic management and monitoring strategies. Against this backdrop, the existence of MFD for the City of Cape Town (CoCT) urbanscale network is yet to be established and the implications yet to be understood, as in other parts of the world. The main aim of this research was, therefore, to empirically estimate the macroscopic fundamental diagram for the CoCT's freeway network and analyse its observed features. To achieve this, observed data of 5 minutes periods for the month of May 2019 was used to estimate the MFD. The results confirmed that when the chaotic scatter-plots of flow and density from individual fixed loop detectors were aggregated the scatter nearly disappeared and points grouped neatly to form a clearly defined free-flow state, critical state and the formation of hysteresis loops past the critical density corresponding with the network observed maximum flow. Further analysis of the MFDs showed that a single hysteresis loop always forms past the critical density during the evening peak in a weekday MFD. However, it was inconclusive during the morning peak period in weekday MFDs. Lastly, an explicit hysteresis loop seldom appears in a Saturday MFD when the peak of traffic demand is lower than on weekdays. In order to understand the dynamics of the congestion spread, the freeway network was partitioned into penetrating highways network and the ring highway network. The results showed that the maximum flows observed for the two sub-networks were significantly different (943 veh/hr/lane for the penetrating highways network and 1539 veh/hr/lane for the ring highway network). The penetrating highways network's MFD indicated the presence of congestion in the network whereas the ring highway network indicated only the free-flow state (no indication of congestion) during peak periods. The congestion seen on the penetrating highways network was found not to be sufficiently spread on those highways. On the 24th May, congestion on the penetrating highway network was observed during both the morning and evening peak periods, whereas on the 31st May congestion was observed mainly during the evening peak period, with hysteresis-like shape. These observations confirmed that congestion during peak periods is not homogenously spread across the entire network, certain areas are more congested than others, hence the observed formation of hysteresis loops and slight scatters. Lastly, the hysteresis loops observed in the penetrating highways network's MFD was further characterized in terms of their shape and size. First, the results showed that the slight scatter and hysteresis patterns observed in penetrating highways network MFD's vary in size and shape across different days. The shapes of the hysteresis loops observed during both the morning and evening peak periods, were type H2 hysteresis loops, signifying a stable recovery of the network with the average network flow remaining unchanged as average network density decreases during the recovery. Characterization of the size of the observed hysteresis loops showed that the drop of the hysteresis (an indicator of network level of instability during recovery phase) was smaller, signifying a more stable network traffic and homogenous distribution of congestion during the recovery phase.
45

Studium interakcí antivirálních látek s intestinálními lékovými efluxními ABC transportéry / Study of interactions of antiviral drugs with intestinal drug efflux ABC transporters

Huličiak, Martin January 2018 (has links)
Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Martin Huličiak Supervisor: PharmDr. Lukáš Červený, Ph.D Title of diploma thesis: Study of interactions of antiviral drugs with intestinal drug efflux ABC transporters P-gp, MRP2 and BCRP are efflux transporters, members of the family of ATP binding cassette (ABC) transporters. These transporters are located on the apical membrane of the intestinal epithelium, where they may limit absorption of orally administered drugs. Study of drug interactions with/on intestinal efflux transporters is necessary to provide safe and effective treatment. The Caco-2 cell line is FDA recommended in vitro model of intestinal barrier and it is used for bidirectional testing of substrates and inhibitors of ABC transporters in preclinical research. However, this methodology has several shortcomings, so the need of introduction of new experimental models is increasing and the ex vivo method based on human or rat intestine is a promising option. Precision-cut intestinal slices (PCIS) represent a mini-model of the organ and contain all types of cells of the tissue. We used both in vitro model using Caco-2 cell monolayers for drug transport study and in our lab established ex vivo method of PCIS for accumulation study...

Page generated in 0.0929 seconds