• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la toxicité neuronale induite par la protéine Tau dans la maladie d’Alzheimer, sur un modèle Invertébré : Drosophila melanogaster / Toward understanding the mechanisms of Tau induced neurotoxicity in Alzheimer disease using Drosophila melanogaster model

Talmat-Amar, Yasmina 26 March 2012 (has links)
La protéine Tau est une protéine associée aux microtubules, localisée principalement dans les axones. Elle joue un rôle important dans la polymérisation et la stabilisation des microtubules, in vitro. Sa fixation aux microtubules est régulée par de nombreuses kinases et phosphatases. En effet, lorsque Tau est phosphorylée, elle se détache des MTs. Inversement, elle se fixe aux MTs lorsqu’elle est déphosphorylée. Le dysfonctionnement de la protéine Tau est à l’origine de différentes maladies neurodégénératives appelées Tauopathies comme la maladie d’Alzheimer. Dans ce contexte pathologique, Tau est anormalement phosphorylée et s’accumule sous forme de structures neurofibrillaires appelées PFH (paires de filaments hélicoïdaux). Ces structures sont retrouvées dans les neurones en dégénérescence et constituent une des caractéristiques majeures de lésion histopathologique de la MA. Dans le cadre de cette maladie, deux principaux mécanismes de toxicité neuronale induite par la protéine Tau ont été suggérés. La première hypothèse considère que l’hyperphosphorylation de Tau provoque son détachement des microtubules induisant ainsi une déstabilisation du cytosquelette microtubulaire, une altération du transport axonal et une mort neuronale. Selon la seconde hypothèse, la fixation excessive de Tau aux microtubules altèrerait le transport axonal des vésicules et autres organites nécessaires au bon fonctionnement de la synapse. Dans ce cas, l’hyperphosphorylation de Tau et la formation des structures PFH auraient en premier lieu un effet protecteur pour la cellule. Lors de ce travail de thèse, nous avons confronté ces deux théories en utilisant le modèle invertébré : Drosophila melanogaster. Tout d’abord, nous avons étudié l’effet de la perte de fonction de la protéine Tau de drosophile (dTau) sur l’architecture du cytosquelette microtubulaire et sur le transport axonal des neuropeptides. Ce travail nous a permis d’une part, de tester l’hypothèse de l’effet du détachement de la protéine Tau des MTs sur le transport axonal, et d’autre part d’étudier la fonction endogène de la protéine dTau. En effet, le rôle in vivo de la protéine Tau endogène sur la morphologie et la physiologie axonale reste inconnu à ce jour, et ceci probablement dû à une redondance fonctionnelle avec les autres protéines associées aux microtubules (MAPs). Dans cette présente étude nous utilisons le modèle Drosophila melanogaster qui présente l’avantage de n’avoir qu’un seul homologue de la famille Tau/MAP2/MAP4 des mammifères. Nos données montrent pour la première fois, in vivo, que la protéine Tau contrôle la densité des microtubules axonaux, et que la perte de la protéine Tau altère le transport axonal microtubule-dépendant. Cependant, les défauts observés ne semblent pas être suffisant pour induire une neurodégénérescence, mais pourraient néanmoins constituer un défaut apparaissant précocement chez les individus atteints. Dans la seconde partie de cette thèse, nous avons étudié l’hypothèse centrée sur l’effet de la fixation excessive de la protéine Tau humaine aux microtubules. Pour cela, nous avons utilisé des drosophiles transgéniques exprimant différentes isoformes mutées de Tau humain (hTau) mimant différents états de phosphorylation de la protéine Tau et s’attachant différemment aux microtubules. Nos résultats montrent clairement que la fixation de Tau en excès sur les microtubules induit des défauts majeurs du transport axonal et de la libération des neuropeptides. Nous démontrons ainsi que l’un des mécanismes possible de la maladie d’Alzheimer est la fixation précoce excessive de Tau sur les microtubules. Par ailleurs, nos résultats mettent en évidence une limite sérieuse des thérapies visant à inhiber la phophorylation de Tau dans la MA. / Tau is a microtubule associated protein that belongs to the MAP structural family. it polymerizes and stabilizes microtubules, in vitro. Tau is found in high amount in axons. The microtubule binding capacity of Tau is regulated by kinases and phophatases. Indeed, when Tau is phosphorylated it desengages from microtubules and when it is dephosphorylated it binds to microtubules and stabilizes them. Tau is involved in several neurodegenerative disorders called tauopathies like the elderly neuropathy, Alzheimer disease (AD). In this neurodegenerative disorder, Tau is abnormally phosphorylated and aggregates to forme neurofibrillary tangles called paired helicoidal filament (PHF), witch is one of the hallmark of AD. Hence, two major hypothesis explaining neurodegeneration in this condition have been suggested. The first hypothesis considers that because of Tau hyperphosphorylation, it detaches from microtubules and starts to form aggregates. Tau detachment from microtubules leads to their destabilization and subsequent defects in axonal transport. These defects in axonal transport lead to synaptic dysfonction and neuronal degeneration. The second hypothesis suggests that an excess of Tau binds onto microtubules, induces axonal transport defects and subsequently neuronal loss. The hyperphosphorylation of Tau and PHF formation would represent a protective response of the cell to prevent axonal defects and neurodegeneresence. The aim of our work is to evaluate these two mechanisms using Drosophila melanogaster model. First, we studied the effect of drosophila Tau (dTau) loss of function on microtubule organisation and axonal transport of neuropeptide in vivo. This work allows us to study the first hypothesis of detachment of Tau from microtubules an its consequences, as well as understanding the endogenous function of dTau. Infact, we took the advantage of drosophila lower genetic redundancy in witch dTau is the only homologue of the mamalian Tau/MAP2/MAP family. Our results demontrated that dTau control axonal microtubule number and that the loss of Tau function affects vesicular axonal transport. However, these defects do not seem to be toxic for the neuron but represent an early event that may progressively become toxic. In the second part of this work we evaluated the second hypothesis. It consists of studying the consequences of an excess of hypophosphorylated Tau bound to microtubules on axonal transport. Our results demontrate for the first time a stronger toxicity of hypophosphorylated Tau for neuronal function compared to pseudophosphoryated Tau. These data demonstrate an important mechanism that could probably be implicated in AD. In addition, our work point out a potentiel limit of a current therapeutic strategy aimed at inhibiting Tau phosphorylation.
2

Etude des bases moléculaires de l'atrophie musculaire spinale / Study of the molecular basis of the spinal muscular atrophy SMA

Boulisfane, Nawal 15 November 2011 (has links)
L'Atrophie Musculaire spinale (SMA) est une maladie neurodégénérative causée par des mutations du gène SMN1 et caractérisée par la dégénérescence sélective des motoneurones alpha de la moelle épinière. les mécanismes moléculaires de la SMA ne sont aps clairs. cependant, deux hypothèses ont été retenues:D'une part, que la déficience en SMN entraine une perturbation de la biogenèse des snRNPs spliceosomales individuelles et par conséquent des défauts d'épissage. pendant ma thèse, nous avons montré que la déficience en SMN provoquait une diminution des particules tri-snRNPs majeures amis surtout mineures et que cela avait des conséquences sur l'épissage d'un sous-groupe de pré-ARNm contenant des introns mineurs.D'autre part, que la déficience en SMN entraine des altérations de transport d'ARN dans les axones, essentiels pour la survie des motoneurones. A part l'ARNm de la beta-actine et l'ARNm de cpg15 récemment identifié, ceux qui pourraient être transportés par SMN n'ont pas été décrits. nous avons donc identifié les ARN interagissant avec les isoformes a-SMN et SMN-fl dans des cellules neuronales, et montré que certains de ces ARN cibles colocalisent avec SMN dans les axones, suggérant qu'elle est impliquée dans leur transport. / Spinal Muscular Atrophy is a neurodegenerative disease caused by mutations in SMN1 gene. SMA is characterized by the loss of alpha-motoneurons of the spinal cord. However, the precise molecular mechanisms underlying the disease are still unkown. two hypotheses have been retained to explain SMA pathigenesis:In one hand, the fact that SMN deficiency leads to a perturbation of individual snRNPs biogenesis and consequently splicing defects. During my PhD, we have shown that SMN deficiency alters the levels of major, but mostly, minor tri-snRNPs. And that leads to splicing defects of a subset of pre-mRNA containing minor introns.In the other hand, that SMN deficiency causes alteration of axonal transport of RNAs crucial to motoneurons survival. Except beta-actin mRNA and the recently identified cpg mRNA, the RNA targets of SMN have not been described. We succeed to identify RNA targets of both a-SMN and SMN-fl isoformes in a neuronal cell line and colocalisation data of some of these targets suggested that SMN could be implicated in the transport of these RNAs.
3

Evolution dirigée de virus adéno-associés pour un transfert de gène efficace dans le système visuel / Directed evolution of adeno-associated viruses for efficient gene transfer in the visual system

Planul, Arthur 15 December 2017 (has links)
Les virus adéno-associés (AAVs) font partie des vecteurs les plus efficaces pour le transfert de gène, en particulier dans la rétine. Ils sont utilisés aussi bien pour des études biologiques que pour la thérapie génique. Malgré cela, il reste encore des barrières qui limitent leur utilisation. Nous proposons ici d’utiliser une technique d’évolution dirigée pour surmonter ces barrières et améliorer l’efficacité des AAVs en tant que vecteurs de gènes. Dans un premier temps, nous avons créé trois librairies virales hautement diversifiées basées sur l’AAV2. Ces librairies étaient constituées de capsides modifiées aléatoirement pour leur donner de nouvelles propriétés. Nous avons ensuite réalisé deux types de sélections. D’une part, nous avons sélectionné nos librairies virales dans le système visuel de la souris pour obtenir une capside capable de transport axonal antérograde trans-synaptique afin de pouvoir étudier simultanément l’activité et la connectivité de réseaux neuronaux. Cette sélection a fortement convergée vers une capside nommée AAV2-7mD, dont la capacité de transport axonal antérograde trans-synaptique est plus efficace que les AAVs 1 et 2. D’autre part, nous avons sélectionné nos librairies virales directement sur des explants de maculas de rétine humaine afin découvrir une capside capable de traverser la membrane limitante interne de la macula humaine. Ceci a pour but d’avoir un vecteur efficace pour des traitements de thérapie génique par voie intra-vitréenne. Cette librairie a commencé à converger mais nous sommes toujours en attente du dernier cycle de sélection. Nous traitons donc dans cette thèse des résultats de deux évolutions dirigées sur l’AAV2 afin de créer des vecteurs de gènes plus performants dans le système visuel. / Adeno-associated viruses (AAVs) are among the most efficient vectors for gene transfer, particularly in the retina. They are used for asking biological questions as well as for gene therapy. Nonetheless, some barriers are still restraining their use. Here, we used a directed evolution method to overcome those barriers and improve the efficiency of AAVs for gene transfer. First, we created three highly diversified viral libraries based on AAV2. Those libraries were based on randomly modified capsids displaying new properties. Then, we did two types of selections. On one hand, we selected our libraries in the retinofugal pathway in order to obtain a capsid with enhanced axonal anterograde trans-synaptic transport capacities, so we could study simultaneously the activity and the connectivity of neuronal networks between the retina and the brain. This selection converged strongly toward a new capsid, named AAV2-7mD, with enhanced axonal anterograde trans-synaptic transport capacities compared to AAV1 and AAV2. On the other hand, we directly selected our viral libraries on human macular explants, to select capsids capable of crossing the human macular inner limiting membrane. Such a capsid would be very useful for retinal gene therapy via intravitreal injections. This library started to converge but we are still waiting to complete the last cycle of selection. In this thesis we discuss the results of these two directed evolution studies on AAV2 to create enhanced gene delivery vectors in the visual system.
4

Stimulation de la survie et de la régénération des cellules ganglionnaires de la rétine par inactivation de la GTPase Rho après lésion du nerf optique du rat adulte

Bertrand, Johanne January 2006 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
5

Trafficking Regulation and Energetics / Régulation du transport et énergétique

Hinckelmann Rivas, Maria Victoria 16 October 2014 (has links)
De plus en plus de preuves montrent que le transport axonal rapide (FAT) joue un rôle crucial au cours des maladies neurodégénératives (NDs). La maladie de Huntington est une maladie neurodégénérative causée par une expansion anormale de polyglutamines dans la partie Nterminale de la protéine huntingtine (HTT) : une grande protéine d’échafaudage impliquée dans la régulation du transport. La présence de HTT mutante comme l’absence de la HTT induisent des défauts de transport chez les mammifères. Chez la Drosophile, la HTT mutante reproduit le phénotype observée chez les mammifères, cependant la fonction conservée de la HTT chez la Drosophile melanogaster (DmHTT) n’est pas encore clairement établie. Ici nous mettons en évidence que DmHTT s’associe aux vésicules, aux microtubules et intéragit avec la proteine dynéine. Dans les neurones corticaux de rat, DmHTT remplace partiellement la HTT de mammifère dans le transport axonal rapide, et les drosophiles invalidées pour la HTT montrent des défauts de transport axonal in vivo. Ces résultats suggèrent que la fonction de la HTT est conservée dans le modèle Drosophile.Le FAT est un processus qui requiert un apport constant d’énergie. Les mitochondries sont les principales sources de production d’ATP de la cellule. Cependant nous avons démontré que le FAT ne dépend non pas de cette source d’énergie là, contrairement à ce que l’on pensait, mais de l’ATP glycolytique produit par les vésicules. La dérégulation de GAPDH ou de PK, les deux enzymes glycolytiques productrices d’ATP, ralentit le transport vésiculaire. Néanmoins, l’invalidation de GAPDH n’affecte pas le transport mitochondrial. En outre, toutes les enzymes glycolytiques sont associées à des vésicules dynamiques et sont capables de produire leur propre ATP. Enfin nous montrons que l’ATP produit est suffisant pour assurer leur propre transport, prouvant l’autonomie énergétique des vésicules pour le transport. / Growing evidence support the idea that impairments in Fast Axonal Transport (FAT) play a crucial role in Neurodegenerative Diseases (NDs). Huntington’s Disease is neurodegenerative disorder caused by an abnormal polyglutamine expansion in the N-Terminal part of huntingtin (HTT), a large scaffold protein implicated in transport regulation. Both the presence of the mutated HTT as the loss of HTT leads to transport defects in mammals. In the fruit fly overexpression of the mutant HTT recapitulates the phenotype observed in mammals. However, it is still unclear whether HTT’s function is conserved in D. melanogaster. Here, we show that D. melanogaster HTT (DmHTT) associates with vesicles, microtubules, and interacts with dynein. In rat cortical neurons, DmHTT partially replaces mammalian HTT in fast axonal transport, and DmHTT KO flies show axonal transport defects in vivo. These results suggest that HTT function in transport is conserved in D. melanogaster.FAT is a process that requires a constant supply of energy. Mitochondria are the main producers of ATP in the cell. However, we have demonstrated that FAT does not depend on this source of energy, as previously thought, but it depends on glycolytic ATP produced on vesicles. Perturbing GAPDH or PK, the two ATP generating glycolytic enzymes, slows down vesicular transport. However, knocking down GAPDH does not affect mitochondrial transport. Furthermore, all of the glycolytic enzymes are associated with dynamic vesicles, and are capable of producing their own ATP. Finally, we show that this ATP production is sufficient to sustain their own transport, demonstrating the energetical autonomy of vesicles for transport.
6

Etude des déficits catécholaminergiques centraux chez la souris Mecp2-déficiente, modèle murin du syndrome de Rett

Panayotis, Nicolas 22 December 2011 (has links)
La méthylation de l’ADN est une modification majeure du génome des eucaryotes permettant de moduler l’expression génique et contrôler le développement des mammifères. La protéine Mecp2 (Methyl CpG binding protein 2), dont le gène est situé sur le chromosome X, appartient à la famille des protéines de liaison à l’ADN méthylé. Sur la base de sa structure et de ses interactions Mecp2 a été décrit comme un répresseur de l’expression des gènes. A l’heure actuelle, son implication en tant qu’activateur de la transcription et organisateur de la structure chromatinienne lui confère un rôle plus global dans la régulation de l’épigénome. Des mutations de MECP2 conduisent à des troubles neurologiques dont le principal est le syndrome de Rett (RTT). Cette pathologie dominante liée à l’X affecte principalement les jeunes filles (incidence: 1/15000 naissances). Même si les causes précises du phénotype RTT ne sont pas connues, le profil d’expression de Mecp2 est en lien avec la synaptogenèse, la maturation et la maintenance des réseaux neuronaux. A mon arrivée en thèse l’équipe qui m’a accueilli venait d’identifier des déficits neuronaux, affectant notamment les groupes catécholaminergiques bulbaires et périphériques, à l’origine de troubles respiratoires chez un modèle murin de cette pathologie. Mon travail de thèse a permis de caractériser l’évolution postnatale des déficits moteurs et physiologiques affectant la souris Mecp2-déficiente. L’étude de structures catécholaminergiques d’intérêt telles que la Substantia Nigra et le Locus Coeruleus a révélé que les neurones dopaminergiques et noradrénergiques centraux ont un métabolisme affecté. Le nombre de neurones immunomarqués apparait significativement réduit dans ces groupes ce qui résulterait d’une perte progressive du phénotype « catécholaminergique », en l’absence de mort cellulaire. Nos données suggèrent que ces atteintes constituent un corrélat neuropathologique aux troubles comportementaux observés chez les souris Mecp2-déficientes. Ainsi certains troubles moteurs ont pu être améliorés, à l’aide d’un agent pharmacologique pro-dopaminergique, la L-Dopa. En relation avec les déficits en Bdnf (Brain-derived neurotrophic factor) décrits chez les patientes et les souris Mecp2-déficientes, nous avons identifié qu’une modification du dosage de Mecp2 induit une dérégulation de gènes (Htt, Hap1) codant des protéines impliquées dans le transport intracellulaire des vésicules de Bdnf. Nos travaux nous permettent de postuler que chez la souris Mecp2-déficiente, une altération de la dynamique de transport des vésicules chargées en Bdnf pourrait exacerber le déficit d’expression de cette neurotrophine. Notre traitement des souris Mecp2-déficientes par la cystéamine, une molécule capable d’agir sur les contenus, la libération et la sécrétion du Bdnf permet d’augmenter la survie des animaux et de réduire leurs troubles moteurs. Nos résultats montrent que les déficiences en Mecp2 entrainent des déficits de transport axonal du Bdnf qui s’ajoutent aux déficits de production du Bdnf. Par ailleurs, avec l’utilisation d’agents pharmacologiques agissant sur ce transport, nous offrons de nouvelles perspectives thérapeutiques. / DNA methylation is the major modification of eukaryotic genomes and plays an essential role in mammalian development. The protein Mecp2 (Methyl CpG binding protein 2), encoded by a gene located on the X chromosome, belongs to the ‘Methyl Binding domain’ protein family. Based on its structure and its interactions Mecp2 has historically been described as a repressor of expression for many genes. Currently, its involvement as an activator of transcription and its role in chromatin architecture suggests that it could be a global regulator of the epigenome. Mutations in MECP2 lead to neurological disorders, among which Rett syndrome (RTT). This dominant X-linked pathology mainly affects girls (incidence: 1/15000 live births). Although the precise causes of the RTT phenotype are unknown, the pattern of Mecp2 expression is related to synaptogenesis, maturation and neuromaintenance. Before my integration in the ‘Human Neurogenetics’ team, this group identified neural deficits, affecting brainstem and peripheral catecholaminergic cell groups, causing respiratory disturbances in a mouse model of this disease. My thesis work enabled the characterization of the postnatal physiological and motor deficits affecting the Mecp2-deficient mice. The study of catecholaminergic structures of interest such as the substantia nigra pars compacta and the locus coeruleus has revealed that the central noradrenergic and dopaminergic neurons are affected in their metabolism. The number of immunolabelled neurons of these groups appears significantly reduced and would result in a gradual loss of the mature ‘catecholaminergic’ phenotype, in the absence of cell death. Our data suggest that these defects are a neuropathological correlate for behavioral disorders observed in Mecp2-deficient mice. Some motor deficits have been improved, with L-Dopa, a pro-dopaminergic drug. In relation with Bdnf (Brain-derived neurotrophic factor) reduction described in patients and Mecp2-deficient mice, we identified that a change in the dosage of Mecp2 deregulates genes (Htt, Hap1) encoding proteins involved in the intracellular transport of Bdnf. Our work allows to postulate that in the Mecp2-deficient neurons, an altered dynamics of Bdnf vesicles transport could exacerbate the deficit of expression of this neurotrophin. Our treatment of Mecp2-deficient mice with cysteamine, a molecule able to increase Bdnf contents and enhancing its release and secretion, increased the survival of the animals and reduced their motor defects. Our results show that the Mecp2-deficiencies lead to alteration in the axonal transport of Bdnf in addition to deficits in Bdnf production. In addition, by the use of pharmacological agents that affect this transport, we offer new therapeutic perspectives.
7

Dynactin1 mutations associated with amyotrophic lateral sclerosis and their effect on axonal transport and neuromuscular junction formation / Dynactin1 mutations associées à la sclérose latérale amyotrophique et leur effet sur le transport axonal et la formation de jonction neuromusculaire

Bercier, Valérie 18 September 2017 (has links)
La sclérose latérale amyotrophique (SLA) est une pathologie neurodégénerative progressive se déclarant vers 50-60 ans. Elle est majoritairement de nature sporadique son incidence est estimée à 1 :1000. La SLA mène à une paralysie progressive et entraine généralement à la mort des patients de 2 à 5 ans suivant le diagnostic aux suite d’une fonte musculaire importante liée à la perte des neurones moteurs. Au cours des années, plusieurs mutations ont été identifiées autant chez les patients atteints de SLA sporadique que de SLA familiale. Ces mutations interfèrent avec la fonction de gènes variés, tels que DCTN1, codant pour la protéine dynactine1, sous-unité du complexe multimoléculaire dynactine. Ce complexe sert d’adaptateur au moteur moléculaire dynéine, chargé du transport axonal rétrograde, où sa fonction permettrait de régir l’activité du complexe moteur et sa capacité à lier divers cargos. Nous avons donc entrepris la caractérisation d’une lignée de poissons zèbre mutants pour dynactin1a (nommés mikre okom632, mokm632), plus particulière en terme du développement d’un type de neurone moteur primaire (les CaPs), afin de déterminer l’effet de la perte de fonction de ce gène sur l’axonogenèse, la formation et la stabilisation de la jonction neuromusculaire, sur le comportement de l’embryon, ainsi que sur le transport axonal.Nous suggérons que dynactin1 favorise la stabilité synaptique, où une perte de fonction de ce gène entraine des défauts de croissance, des anomalies éléctrophysiologiques et un comportement anormal. Ce rôle semble être indépendant des fonctions connues de régulateur du moteur dynéine. / Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease, which is mainly sporadic in nature. This progressive pathology has an estimated incidence of 1:1000 and generally leads to death within 2-5 years of diagnosis due to muscle wasting and severe motor neuron loss. Over the last years, mutations have been identified in both sporadic and familial ALS patients, interfering with the function of many genes, including DCTN1, which encodes for a subunit of the motor protein complex subunit dynactin. The dynactin complex serves as an adaptor for the dynein motor complex, responsible for retrograde axonal transport, and it is believed to regulate dynein activity and the binding capacity for cargos. We set out to characterize a mutant zebrafish line for dynactn1a (named mikre okom632, mokm632), looking specifically at caudal primary motor neurons (CaPs), with regard to axonal development, formation and stability of the neuromuscular junction (NMJ) and the behavioral phenotype produced in embryos, as well as axonal transport metrics. We suggest a role for dynactin1 in synapse stability, where the loss-of-function of this gene leads to growth defects, electrophysiological abnormalities and behavioral deficits. This role appears to be independent of its known function as a regulator of dynein, its implication in axonal transport, or its regulation of microtubule dynamics. With this study, we hope to elucidate key molecular mechanisms in ALS etiology by revealing the role of dynactin1 in NMJ development and maintenance.
8

Le rôle de la protéine tau dans la mort des cellules ganglionnaires de la rétine : cas du glaucome et de la maladie d’Alzheimer

Chiasseu Mbeumi, Marius Trésor 12 1900 (has links)
La protéostasie désigne l’ensemble de stratégies développées par la cellule pour assurer la préservation de son protéome. Parmi celles-ci on peut citer le contrôle du repliement, de la concentration, et de la distribution des protéines. Les neurones en raison de leur importante activité métabolique représentent une population cellulaire particulièrement vulnérable à l’altération de la protéostasie, auquel cas on parle de protéinopathie. C’est notamment le cas des tauopathies et β-amyloidopathies, deux troubles neurodégénératifs, respectivement caractérisés par le dysfonctionnement de la protéine tau et du peptide amyloïde-β (Aβ). La protéine tau par le biais de son état de phosphorylation contrôle la stabilisation des microtubules, tandis que l’Aβ issu du clivage de l’APP (Amyloid Precursor Protein) serait impliqué dans la plasticité synaptique ; de telle sorte que l’altération du fonctionnement ou de la protéostasie de ces deux molécules engendre de graves troubles neuronaux. Le glaucome, principale cause de cécité irréversible au monde, est une neuropathie dégénérative caractérisée par la perte spécifique des somas des cellules ganglionnaires de la rétine (CGR) et de leurs axones dans le nerf optique. Bien que l’hypertension oculaire (HTO) soit le principal facteur de risque, on ignore la cause du glaucome raison pour laquelle il n’existe aucun remède contre la maladie. La maladie d’Alzheimer (MA), principale cause de démence, est caractérisée par la présence d’enchevêtrement neurofibrillaires formés de la protéine tau dans les neurones et de plaques séniles constitué d’agrégats d’Aβ dans le parenchyme cérébral. De manière surprenante, de nombreuses études révèlent que le glaucome et la MA présentent de nombreux points communs. C’est ainsi que des agrégats d’Aβ et de tau ont été trouvés dans les CGR de sujets atteints du glaucome. De même les sujets victimes de la MA présentent des déficits visuels et une dégénérescence des CGR. Vu l’importance de tau pour la physiologie neuronale et son rôle de médiateur de la toxicité d’Aβ, nous proposons l’hypothèse selon laquelle le dysfonctionnement de la protéine tau résulte en la perte des CGR. Les résultats présentés dans cette thèse reposent sur deux modèles expérimentaux de neurodégénérescence : un modèle de glaucome dépendant de HTO chez les rats (modèle de Morrison) et le modèle 3xTg de la MA chez lequel les souris expriment des mutations dans la protéine tau et la voie Aβ (PS1M146V, APPSWE, TauP301L). Chez ces animaux nous avons prélevé la rétine, le nerf optique et le cerveau, sur lesquels nous avons étudié l’expression, la distribution, et la neurotoxicité de tau par western blot, immunohistochimie et PCR quantitative. Nos résultats révèlent que comparativement aux contrôles sains, les rétines malades (glaucome et MA) présentent une accumulation de tau anormalement phosphorylée, tandis que son expression génique reste inchangée. Cette hausse de tau est la conséquence de sa relocalisation vers le compartiment somatodendritique et le segment axonal intrarétinien des CGR, ceci au détriment des axones myélinisés inclus dans le nerf optique. Nos données montrent que les CGR 3xTg présentent une baisse drastique du transport axonal antérograde, indiquant que l’altération de la distribution de tau pourrait être à la base de cette perte de fonction axonale. Finalement, nous démontrons que l’accumulation de tau dans la rétine malade provoque éventuellement la mort des CGR. Au total, cette thèse démontre que les rétines atteintes du glaucome et de la MA présentent les manifestations cardinales des tauopathies à savoir l’accumulation, l’altération de la phosphorylation, et une distribution anormale de tau le tout culminant en la perte de fonction et la dégénérescence des CGR. / Proteostasis refers to a set of strategies developed by the cell to ensure the maintenance of its proteome. These strategies include the control of protein folding, the amount, and the distribution of the proteins. Neurons are endowed with a high metabolic rate and, as such, are highly vulnerable to alterations in proteostasis, a situation referred to as proteinopathy. Tauopathies and β-amyloidopathies are two such instances wherein tau and amyloid-β, respectively, undergo dysfunction. Tau protein is a microtubule stabilising protein which function is regulated by its phosphorylation state, while Aβ a product of the cleavage of APP (Amyloid Precursor Protein) which is thought to be involved in the regulation of synaptic plasticity. Therefore, functional or proteostatic alterations of these proteins result in harmful consequences for neurons. Glaucoma, the main cause of irreversible blindness, is a degenerative optic neuropathy characterised by the selective loss of retinal ganglion cells (RGC) and their axons in the optic nerve. Although ocular hypertension (OHT) is the main risk factor for the development of glaucoma, the cause of the disease is still unknown. There is currently no cure for glaucoma and the only available treatment is to reduce OHT pharmacologically or surgically. Alzheimer’s disease, the main cause of dementia, is characterized by the presence of neurofibrillary tangles made of tau protein in neurons and senile plaques made of Aβ in the cerebral parenchyma. Intriguingly, several studies have shown that glaucoma and AD share several common features. For instance, aggregates of tau and Aβ have been described in the retina of glaucoma subjects. Likewise, AD patients show visual defects associated with RGC degeneration. Mindful of the importance of tau for neuronal physiology, and of its role as mediator of Aβ toxicity, we put forward the hypothesis that tau protein alterations leads to RGC dysfunction and death. vii The results presented in this thesis were based on two experimental models of neurodegeneration: a model of OHT-dependent glaucoma in rats leading to RGC death (Morrison model), and the 3xTg model of AD wherein mice overexpress mutant forms of tau and Aβ (PS1M146V, APPSWE, TauP301L). Using these animals, we collected retina, optic nerve, and brains which we used to study tau expression, distribution and neurotoxicity by western blot, immunohistochemistry and real-time PCR. Our results show that, when compared to healthy controls, the diseased retina (glaucoma or AD) display accumulation of abnormally phosphorylated tau while its gene expression remains unchanged. The increase of retinal tau protein might result from the redistribution of the protein in the somatodendritic compartment and intraretinal axonal segment of RGCs at the expense of the extraocular axonal segment enclosed within the optic nerve. Our data also demonstrate that RGCs from 3xTg mice show a drastic reduction of anterograde axonal transport suggesting that missorted tau might underlie these functional deficits. Lastly, we demonstrate that tau accumulation in the diseased retina eventually promotes RGC death. Altogether, this thesis demonstrates that the glaucomatous and AD retinas present the cardinal features of tauopathies including tau accumulation, altered phosphorylation, and mislocalization which contribute to RGC dysfunction and subsequent death.

Page generated in 0.4625 seconds