• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La neuroimmunité dans la sclérose latérale amyotrophique / Neuroimmunity in amyotrophic lateral sclerosis

Coque, Emmanuelle 30 November 2017 (has links)
La sclérose latérale amyotrophique (SLA) est une maladie neurodégénérative incurable caractérisée par la perte sélective des motoneurones du cerveau et de la moelle épinière. Elle se manifeste par une faiblesse musculaire qui évolue vers une paralysie, entrainant la mort du patient dans les 3 à 5 ans après l’apparition des symptômes. Une réponse inflammatoire associée à l'accumulation de cellules immunitaire dans le système nerveux central (SNC) est une signature de la SLA. Ce travail propose d'étudier le rôle des cellules résidentes du SNC, notamment les astrocytes, et des cellules immunitaires périphériques, notamment les lymphocytes T CD8+, dans la SLA. Nous montrons qu'une fois infiltrées dans le SNC des souris mutantes modèles de la SLA (lignée SOD1G93A) des cellules T CD8+ s'activent et subissent une expansion de type oligoclonale. In vitro, les cellules T CD8+ issues de souris SOD1G93A sont capables d'induire la mort des motoneurones spécifiquement, par un mécanisme dépendant de la liaison du TCR avec le CMH de classe I. Nous rapportons que la déplétion périphérique des cellules T CD8+ chez les souris modèles de SLA permet de protéger une partie des motoneurones des processus neurodégénératifs. Une approche génétique permettra de confirmer l'implication des lymphocytes cytotoxiques dans l'évolution de la maladie. / Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by the selective loss of upper and lower motoneurons. Symptoms appears as muscular weakness, which irrevocably leads to muscle paralysis and death of patients within 3 to 5 years after onset of symptoms. An inflammatory response, along with the accumulation of blood-derived immune cells in the central nervous system (CNS) is a hallmark of the disease. This work proposes to investigate the role of resident cells of the brain, such as astrocytes and especially peripheral immune cells such as T CD8+ lymphocytes, in ALS pathogenesis. We show that once infiltrated in the CNS of SOD1G93A mice, CD8+ T cells become activated and undergo an oligoclonal expansion. In vitro, CD8+ T cells isolated from ALS mouse model (SOD1G93A strain) can trigger motoneuron death, in a manner that is dependent on the recognition of the MHC class I by TCR. We report that peripheral immunodepletion of CD8+ T cells is not sufficient to improve lifespan of SOD1G93A mice, but still permit to protect motoneurons from neurodegeneration. A genetic approach will confirm implication of CD8+ T lymphocytes in the disease.
2

Dynactin1 mutations associated with amyotrophic lateral sclerosis and their effect on axonal transport and neuromuscular junction formation / Dynactin1 mutations associées à la sclérose latérale amyotrophique et leur effet sur le transport axonal et la formation de jonction neuromusculaire

Bercier, Valérie 18 September 2017 (has links)
La sclérose latérale amyotrophique (SLA) est une pathologie neurodégénerative progressive se déclarant vers 50-60 ans. Elle est majoritairement de nature sporadique son incidence est estimée à 1 :1000. La SLA mène à une paralysie progressive et entraine généralement à la mort des patients de 2 à 5 ans suivant le diagnostic aux suite d’une fonte musculaire importante liée à la perte des neurones moteurs. Au cours des années, plusieurs mutations ont été identifiées autant chez les patients atteints de SLA sporadique que de SLA familiale. Ces mutations interfèrent avec la fonction de gènes variés, tels que DCTN1, codant pour la protéine dynactine1, sous-unité du complexe multimoléculaire dynactine. Ce complexe sert d’adaptateur au moteur moléculaire dynéine, chargé du transport axonal rétrograde, où sa fonction permettrait de régir l’activité du complexe moteur et sa capacité à lier divers cargos. Nous avons donc entrepris la caractérisation d’une lignée de poissons zèbre mutants pour dynactin1a (nommés mikre okom632, mokm632), plus particulière en terme du développement d’un type de neurone moteur primaire (les CaPs), afin de déterminer l’effet de la perte de fonction de ce gène sur l’axonogenèse, la formation et la stabilisation de la jonction neuromusculaire, sur le comportement de l’embryon, ainsi que sur le transport axonal.Nous suggérons que dynactin1 favorise la stabilité synaptique, où une perte de fonction de ce gène entraine des défauts de croissance, des anomalies éléctrophysiologiques et un comportement anormal. Ce rôle semble être indépendant des fonctions connues de régulateur du moteur dynéine. / Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease, which is mainly sporadic in nature. This progressive pathology has an estimated incidence of 1:1000 and generally leads to death within 2-5 years of diagnosis due to muscle wasting and severe motor neuron loss. Over the last years, mutations have been identified in both sporadic and familial ALS patients, interfering with the function of many genes, including DCTN1, which encodes for a subunit of the motor protein complex subunit dynactin. The dynactin complex serves as an adaptor for the dynein motor complex, responsible for retrograde axonal transport, and it is believed to regulate dynein activity and the binding capacity for cargos. We set out to characterize a mutant zebrafish line for dynactn1a (named mikre okom632, mokm632), looking specifically at caudal primary motor neurons (CaPs), with regard to axonal development, formation and stability of the neuromuscular junction (NMJ) and the behavioral phenotype produced in embryos, as well as axonal transport metrics. We suggest a role for dynactin1 in synapse stability, where the loss-of-function of this gene leads to growth defects, electrophysiological abnormalities and behavioral deficits. This role appears to be independent of its known function as a regulator of dynein, its implication in axonal transport, or its regulation of microtubule dynamics. With this study, we hope to elucidate key molecular mechanisms in ALS etiology by revealing the role of dynactin1 in NMJ development and maintenance.

Page generated in 0.1069 seconds