• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transport de fluides miscibles à propriétés physiques variables en cellule Hele-Shaw.Comparaisons entre simulations numériques et mesures par LIF / Variable physical properties miscible fluids transport in Hele-Shaw cell. Comparison between numerical simulations and LIF measures

Mainhagu, Jon 01 July 2009 (has links)
L'étude décrite dans cette thèse porte sur l'injection ponctuelle d'une solution saline au sein d'une cellule dite de Hele-Shaw, afin de caractériser le comportement dispersif d'un polluant en milieu poreux. L'approche expérimentale employée est basée sur l'implémentation originale d'un dispositif de Fluorescence Induite par Laser (LIF) dans la cellule. La mise en place d'un protocole de mesure efficace permet de mener une analyse quantitative des résultats expérimentaux. En outre, en appliquant la méthode des moments, il est possible de caractériser avec précision le comportement dispersif de la zone de mélange de la solution injectée. Parallèlement aux expériences, à l'aide du code numérique FRIPE, les injections ont été simulées numériquement. L'analyse quantitative a été appliquée à ces dernières. Une comparaison poussée des résultats expérimentaux et numériques a donc été effectuée, du point de vue qualitatif mais aussi sur l'expression de la dispersion du panache de la zone de mélange de la solution / The study described in this thesis is about punctual injection of a saline solution inside a "Hele-Shaw cell" in order to characterize the dispersive behavior of a pollutant in porous media. The chosen experimental approach is based on the setup of an original Laser Induced Fluorescence (LIF) in the Hele-Shaw cell. The setting of the experimental apparatus allows quantitative data reduction of the experimental results. Moreover the "Moments Method" studied precisely the solution mixing dispersive behavior. Using the numerical code FRIPE the same injections have been simulated. The same quantitative data reductions have been applied to the numerical results. This led to an extensive comparison of the numerical and the experimental results, qualitatively but also of the dispersion in the mixing area of the injected solution
2

Méthodes de décomposition de domaine espace-temps pour la formulation mixte de problèmes d'écoulement et de transport en milieu poreux

Hoang, Thi Thao Phuong 11 December 2013 (has links) (PDF)
Cette thèse présente une contribution aux développements de méthodes numériques pour la simulation d'écoulements en milieu poreux, en particulier par des méthodes de décomposition de domaine espace--temps qui permettent l'utilisation de pas de temps différents dans les différents sous--domaines. Nous étudions deux types de méthodes: la première est basée sur une généralisation de l'opérateur de Steklov-Poincaré au cas de problèmes dépendants du temps, et la seconde est basée sur la méthode de Relaxation d'Onde Optimisée de Schwarz (OSWR) dans laquelle des conditions de transmission plus générales (Robin ou Ventcell) sont utilisées pour accélérer la convergence de l'algorithme. Ces deux méthodes sont étudiées sur une formulation mixte qui est bien adaptée à la modélisation de l'écoulement et du transport en milieu poreux. Nous considérons tout d'abord un problème de diffusion et formulons, pour chaque méthode, un problème sur l'interface espace -temps entre les sous-domaines. Le caractère bien posé de ces problèmes, avec des conditions aux limites de Dirichlet ou de Robin, est démontré. Les preuves de convergence de l'algorithme OSWR et de sa version semi-discrète sous forme mixte sont également données. Des expériences numériques sont menées en 2D pour comparer les performances des deux méthodes sur des problèmes fortement hétérogènes, et un préconditionneur de Neumann--Neumann dépendant du temps permet d'accélérer la première méthode. Les deux méthodes sont ensuite étendues au cas d'une équation d'advection-diffusion, l'advection et la diffusion étant traitées séparément grâce une technique de séparation d'opérateurs, ce qui permet d'utiliser des pas de temps différents pour les deux phénomènes dans chaque sous-domaine. Des conditions de transmission sont proposées séparément pour l'advection et pour la diffusion. La convergence des méthodes est étudiée sur des exemples numériques, pour des problèmes en régime d'advection dominante ou de diffusion dominante, et leur précision en temps est étudiée dans le cas de grilles non-conformes en temps. Deux exemples inspirés de la simulation du stockage de déchets nucléaires sont étudiés, et la simulation sur des temps longs est réalisée par l'intermédiaire de fenêtres en temps. Nous considérons également la méthode OSWR avec des conditions de transmission de Ventcell, étendues à la formulation mixte. Nous démontrons que les problèmes de sous--domaine avec des conditions aux limites de Ventcell sont bien posés. Nous comparons les performances des paramètres optimisés pour Ventcell et Robin dans le cas de problèmes hétérogènes pour une décomposition en deux sous-domaines. Enfin, nous étudions l'extension des deux méthodes au cas où l'interface représente une fracture pour un modèle réduit d'écoulement dans un milieu poreux fracturé.
3

Estimations d'erreur a posteriori et critères d'arrêt pour des solveurs par décomposition de domaine et avec des pas de temps locaux / A posteriori error estimates and stopping criteria for solvers using the domain decomposition method and with local time stepping

Ali Hassan, Sarah 26 June 2017 (has links)
Cette thèse développe des estimations d’erreur a posteriori et critères d’arrêt pour les méthodes de décomposition de domaine avec des conditions de transmission de Robin optimisées entre les interfaces. Différents problèmes sont considérés: l’équation de Darcy stationnaire puis l’équation de la chaleur, discrétisées par les éléments finis mixtes avec un schéma de Galerkin discontinu de plus bas degré en temps pour le second cas. Pour l’équation de la chaleur, une méthode de décomposition de domaine globale en temps, avec mêmes ou différents pas de temps entre les différents sous domaines, est utilisée. Ce travail est finalement étendu à un modèle diphasique en utilisant une méthode de volumes finis centrés par maille en espace. Pour chaque modèle, un problème d’interface est résolu itérativement, où chaque itération nécessite la résolution d’un problème local dans chaque sous-domaine, et les informations sont ensuite transmises aux sous-domaines voisins. Pour les modèles instationnaires, les problèmes locaux dans les sous-domaines sont instationnaires et les données sont transmises par l’interface espace-temps. L’objectif de ce travail est, pour chaque modèle, de borner l’erreur entre la solution exacte et la solution approchée à chaque itération de l’algorithme de décomposition de domaine. Différentes composantes d’erreur en jeu de la méthode sont identifiées, dont celle de l’algorithme de décomposition de domaine, de façon à définir un critère d’arrêt efficace pour cette méthode. En particulier, pour l’équation de Darcy stationnaire, on bornera l’erreur par un estimateur de décomposition de domaine ainsi qu’un estimateur de discrétisation en espace. On ajoutera à la borne de l’erreur un estimateur de discrétisation en temps pour l’équation de la chaleur et pour le modèle diphasique. L’estimation a posteriori répose sur des techniques de reconstructions de pressions et de flux conformes respectivement dans les espaces H1 et H(div) et sur la résolution de problèmes locaux de Neumann dans des bandes autour des interfaces de chaque sous-domaine pour les flux. Ainsi, des critères pour arrêter les itérations de l’algorithme itératif de décomposition de domaine sont développés. Des simulations numériques pour des problèmes académiques ainsi qu’un problème plus réaliste basé sur des données industrielles sont présentées pour illustrer l’efficacité de ces techniques. En particulier, différents pas de temps entre les sous-domaines sont considérés pour cet exemple. / This work contributes to the developpement of a posteriori error estimates and stopping criteria for domain decomposition methods with optimized Robin transmission conditions on the interface between subdomains. We study several problems. First, we tackle the steady diffusion equation using the mixed finite element subdomain discretization. Then the heat equation using the mixed finite element method in space and the discontinuous Galerkin scheme of lowest order in time is investigated. For the heat equation, a global-in-time domain decomposition method is used for both conforming and nonconforming time grids allowing for different time steps in different subdomains. This work is then extended to a two-phase flow model using a finite volume scheme in space. For each model, the multidomain formulation can be rewritten as an interface problem which is solved iteratively. Here at each iteration, local subdomain problems are solved, and information is then transferred to the neighboring subdomains. For unsteady problems, the subdomain problems are time-dependent and information is transferred via a space-time interface. The aim of this work is to bound the error between the exact solution and the approximate solution at each iteration of the domain decomposition algorithm. Different error components, such as the domain decomposition error, are identified in order to define efficient stopping criteria for the domain decomposition algorithm. More precisely, for the steady diffusion problem, the error of the domain decomposition method and that of the discretization in space are estimated separately. In addition, the time error for the unsteady problems is identified. Our a posteriori estimates are based on the reconstruction techniques for pressures and fluxes respectively in the spaces H1 and H(div). For the fluxes, local Neumann problems in bands arround the interfaces extracted from the subdomains are solved. Consequently, an effective criterion to stop the domain decomposition iterations is developed. Numerical experiments, both academic and more realistic with industrial data, are shown to illustrate the efficiency of these techniques. In particular, different time steps in different subdomains for the industrial example are used.

Page generated in 0.0689 seconds