• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Resolution Optical Tweezers for Biological Studies

Mahamdeh, Mohammed 06 February 2012 (has links) (PDF)
In the past decades, numerous single-molecule techniques have been developed to investigate individual bio-molecules and cellular machines. While a lot is known about the structure, localization, and interaction partners of such molecules, much less is known about their mechanical properties. To investigate the weak, non-covalent interactions that give rise to the mechanics of and between proteins, an instrument capable of resolving sub-nanometer displacements and piconewton forces is necessary. One of the most prominent biophysical tool with such capabilities is an optical tweezers. Optical tweezers is a non-invasive all-optical technique in which typically a dielectric microsphere is held by a tightly focused laser beam. This microsphere acts like a microscopic, three-dimensional spring and is used as a handle to study the biological molecule of interest. By interferometric detection methods, the resolution of optical tweezers can be in the picometer range on millisecond time scales. However, on a time scale of seconds—at which many biological reactions take place—instrumental noise such as thermal drift often limits the resolution to a few nanometers. Such a resolution is insufficient to resolve, for example, the ångstrom-level, stepwise translocation of DNA-binding enzymes corresponding to distances between single basepairs of their substrate. To reduce drift and noise, differential measurements, feedback-based drift stabilization techniques, and ‘levitated’ experiments have been developed. Such methods have the drawback of complicated and expensive experimental equipment often coupled to a reduced throughput of experiments due to a complex and serial assembly of the molecular components of the experiments. We developed a high-resolution optical tweezers apparatus capable of resolving distances on the ångstrom-level over a time range of milliseconds to 10s of seconds in surface-coupled assays. Surface-coupled assays allow for a higher throughput because the molecular components are assembled in a parallel fashion on many probes. The high resolution was a collective result of a number of simple, easy-to-implement, and cost-efficient noise reduction solutions. In particular, we reduced thermal drift by implementing a temperature feedback system with millikelvin precision—a convenient solution for biological experiments since it minimizes drift in addition to enabling the control and stabilization of the experiment’s temperature. Furthermore, we found that expanding the laser beam to a size smaller than the objective’s exit pupil optimized the amount of laser power utilized in generating the trapping forces. With lower powers, biological samples are less susceptible to photo-damage or, vice versa, with the same laser power, higher trapping forces can be achieved. With motorized and automated procedures, our instrument is optimized for high-resolution, high-throughput surface-coupled experiments probing the mechanics of individual biomolecules. In the future, the combination of this setup with single-molecule fluorescence, super-resolution microscopy or torque detection will open up new possibilities for investigating the nanomechanics of biomolecules.
2

High Resolution Optical Tweezers for Biological Studies

Mahamdeh, Mohammed 16 December 2011 (has links)
In the past decades, numerous single-molecule techniques have been developed to investigate individual bio-molecules and cellular machines. While a lot is known about the structure, localization, and interaction partners of such molecules, much less is known about their mechanical properties. To investigate the weak, non-covalent interactions that give rise to the mechanics of and between proteins, an instrument capable of resolving sub-nanometer displacements and piconewton forces is necessary. One of the most prominent biophysical tool with such capabilities is an optical tweezers. Optical tweezers is a non-invasive all-optical technique in which typically a dielectric microsphere is held by a tightly focused laser beam. This microsphere acts like a microscopic, three-dimensional spring and is used as a handle to study the biological molecule of interest. By interferometric detection methods, the resolution of optical tweezers can be in the picometer range on millisecond time scales. However, on a time scale of seconds—at which many biological reactions take place—instrumental noise such as thermal drift often limits the resolution to a few nanometers. Such a resolution is insufficient to resolve, for example, the ångstrom-level, stepwise translocation of DNA-binding enzymes corresponding to distances between single basepairs of their substrate. To reduce drift and noise, differential measurements, feedback-based drift stabilization techniques, and ‘levitated’ experiments have been developed. Such methods have the drawback of complicated and expensive experimental equipment often coupled to a reduced throughput of experiments due to a complex and serial assembly of the molecular components of the experiments. We developed a high-resolution optical tweezers apparatus capable of resolving distances on the ångstrom-level over a time range of milliseconds to 10s of seconds in surface-coupled assays. Surface-coupled assays allow for a higher throughput because the molecular components are assembled in a parallel fashion on many probes. The high resolution was a collective result of a number of simple, easy-to-implement, and cost-efficient noise reduction solutions. In particular, we reduced thermal drift by implementing a temperature feedback system with millikelvin precision—a convenient solution for biological experiments since it minimizes drift in addition to enabling the control and stabilization of the experiment’s temperature. Furthermore, we found that expanding the laser beam to a size smaller than the objective’s exit pupil optimized the amount of laser power utilized in generating the trapping forces. With lower powers, biological samples are less susceptible to photo-damage or, vice versa, with the same laser power, higher trapping forces can be achieved. With motorized and automated procedures, our instrument is optimized for high-resolution, high-throughput surface-coupled experiments probing the mechanics of individual biomolecules. In the future, the combination of this setup with single-molecule fluorescence, super-resolution microscopy or torque detection will open up new possibilities for investigating the nanomechanics of biomolecules.
3

Investigations on the influence of pore structure and wettability on multiphase flow in porous medium using x-ray computed tomography: Application to underground CO2 storage and EOR

Zulfiqar, Bilal 28 May 2024 (has links)
Capillary trapping plays a central role in the geological storage of CO2, oil recovery, and water soil infiltration. The key aim of this study is to investigate the impact of surface properties (wettability, roughness, heterogeneous mineral composition) on the dynamics of quasi-static fluid displacement process and capillary trapping efficiency in porous medium. We concluded that for homogeneous wet smooth glass beads surfaces, a transition in fluid displacement pattern occurs from a compact (for θ < 90°; imbibition process) to a fractal front-pattern (for θ > 90°; drainage process) leading to a crossover in capillary trapping efficiency from zero to maximum. The impact of surface roughness on capillary trapping efficiency was also studied, and an opposite trends in terms of wettability dependency was observed. Rough natural sands surfaces depicts a non-monotonous wettability dependency, i.e. a transition from maximal trapping (for θ < 90°) to no-trapping occurs (at θ = 90°), followed by an increase to medium trapping (for θ > 90°). For a fractional-wet media, the percolating cluster of hydrophobic sediments (connected hydrophobic pathways) characterize the fluid displacement pattern and trapping efficiency.

Page generated in 0.2002 seconds