• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EVALUATING THE ROLE OF BREAST CANCER STEM CELL POPULATIONS AS PREDICTORS OF RESPONSE TO TRASTUZUMAB TREATMENT

Sandoval, Maria Luisa 02 September 2014 (has links)
No description available.
2

The role of HER4 in relation to trastuzumab resistance and prognosis in HER2 positive breast cancer

Mohd Nafi, Siti Norasikin January 2014 (has links)
Background Trastuzumab resistance imposes a major limitation to the successful treatment of HER2 positive breast cancer. The expression of HER4 and its prognostic value is controversial in breast cancer. Furthermore, its role in trastuzumab treatment and resistance in HER2 positive breast cancer has not been reported. Methods The effects of trastuzumab on HER4 cleavage and its localisation were studied in both parental and trastuzumab-resistant SKBR3 and BT474 cells using western blot, RT-PCR, nuclear fractionation and confocal microscopy. Tissue microarrays consisting of a cohort of HER2 positive breast cancer patients were stained for HER4 by immunohistochemistry and the results were correlated with patients’ outcome. This study also assessed HER4 expression in the tumor samples from a window study of trastuzumab alone or in combination with neoadjuvant chemotherapy in HER2 positive breast cancer patients. Results Trastuzumab treatment upregulated HER4 mRNA, and increased expression of both 80 and 180 kDa HER4 protein isoforms, and induced nuclear translocation of 80kDa HER4 protein isoforms, which the results similar to heregulin stimulation. This was also seen in trastuzumab resistant cells although HER4<sub>80kDa</sub> and nuclear HER4 decreased upon overnight withdrawal of trastuzumab in resistant cell lines. In addition, knockdown of HER4 protein expression by specific siRNAs increased trastuzumab sensitivity and reversed trastuzumab resistance in SKBR3 and BT474 cells, confirming the importance of HER4 in trastuzumab response. This study also showed that trastuzumab-induced HER4 nuclear translocation is due to HER4 activation and cleavage since &gamma;-secretase inhibitor (GSi) and neratinib prevented the process when combined with trastuzumab treatment, correlating with an increased apoptosis and decreased cell viability. There was also increased nuclear HER4 expression in tumors from both BT474 xenografts and from patients with breast cancer treated with trastuzumab monotherapy. Furthermore, nuclear HER4 predicted poor clinical response to trastuzumab monotherapy in patients undergoing a window study and was a poor prognostic factor in HER2 positive breast cancer. Conclusions This study suggests HER4 activation, cleavage and nuclear translocation play a key role in trastuzumab resistance in HER2 positive breast cancer. Nuclear HER4 could be a novel predictive and prognostic biomarker in HER2 positive breast cancer patients.
3

Unravelling Drug Resistance Mechanisms in Breast Cancer

von der Heyde, Silvia 04 June 2015 (has links)
No description available.
4

Role tyrosinkinázové aktivity mitochondriálního ERBB2/HER2 v rakovině prsu / The Role of Tyrosine Kinase Activity of Mitochondrial ERBB2/HER2 in Breast Cancer

Novotná, Eliška January 2019 (has links)
Breast cancer is a common malignant disease affecting millions of women worldwide. Amplification of HER2 oncogene, a tyrosine kinase receptor, in breast cancer allows application of targeted therapy, but approximately one third of patients develop resistance to treatment. Relocalization of HER2 from the plasma membrane into the mitochondria was found and suggested as one of the potential causes of such resistance. Here we document that the function of mitochondrial HER2 is distinct from that of HER2 in the plasma membrane. Mitochondrial HER2 enhances cancer cell energetic metabolism, proliferation and migration in vitro, and tumour formation in vivo in mice correlating with elevated level of ROS signalling. The kinase activity of mitochondrial HER2 is unaffected, therefore I investigated its role in mitochondrial HER2 function. Moderate, endogenous levels of the kinase activity of mitochondrial HER2 drive pro-tumorigenic properties of breast cancer cells, while constitutive kinase activity sensitizes these cells to cell death and attenuates tumour formation in animal models. On the other hand, impairment of kinase activity due to mutation in the ATP binding site of mitochondrial HER2 supports adherence-independent growth in vitro and tumor growth in vivo. We propose that HER2 function in...
5

Role tyrosinkinázové aktivity mitochondriálního ERBB2/HER2 v rakovině prsu / The Role of Tyrosine Kinase Activity of Mitochondrial ERBB2/HER2 in Breast Cancer

Novotná, Eliška January 2019 (has links)
Breast cancer is a common malignant disease affecting millions of women worldwide. Amplification of HER2 oncogene, a tyrosine kinase receptor, in breast cancer allows application of targeted therapy, but approximately one third of patients develop resistance to treatment. Relocalization of HER2 from the plasma membrane into the mitochondria was found and suggested as one of the potential causes of such resistance. Here we document that the function of mitochondrial HER2 is distinct from that of HER2 in the plasma membrane. Mitochondrial HER2 enhances cancer cell energetic metabolism, proliferation and migration in vitro, and tumour formation in vivo in mice correlating with elevated level of ROS signalling. The kinase activity of mitochondrial HER2 is unaffected, therefore I investigated its role in mitochondrial HER2 function. Moderate, endogenous levels of the kinase activity of mitochondrial HER2 drive pro-tumorigenic properties of breast cancer cells, while constitutive kinase activity sensitizes these cells to cell death and attenuates tumour formation in animal models. On the other hand, impairment of kinase activity due to mutation in the ATP binding site of mitochondrial HER2 supports adherence-independent growth in vitro and tumor growth in vivo. We propose that HER2 function in...

Page generated in 0.0849 seconds