• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Role of BRDT in Esophageal Squamous Cell Carcinoma

Wang, Xin 30 September 2021 (has links)
No description available.
2

Prédiction de la réponse aux traitements in vivo de tumeurs basées sur le profil moléculaire des tumeurs par apprentissage automatique / Prediction of tumour in vivo response to treatments using its molecular profiles via machine learning

Nguyen, Cam Linh 05 June 2019 (has links)
Ces dernières années, les thérapies ciblées pour le traitement du cancer, ont été introduites. Cependant, un médicament fonctionnant chez un patient peut ne pas fonctionner chez un autre. Pour éviter l'administration de traitements inefficaces, des méthodes capables de prédire les patients qui répondront à un médicament donné doivent être mises au point.Il n'est actuellement pas possible de prédire l'efficacité de la grande majorité des médicaments anticancéreux. L’apprentissage automatique (AA) est un outil particulièrement prometteur pour la médecine personnalisée. L’AA est un champ d’étude de l'intelligence artificielle ; elle concerne la mise au point et l'application d'algorithmes informatiques qui s'améliorent avec l'expérience. Dans ce cas, l'algorithme d’AA apprendra à faire la distinction entre les tumeurs sensibles et résistantes en fonction de plusieurs gènes au lieu d'un seul gène. Cette étude se concentre sur l'application de différentes approches de l’AA pour prédire la réponse à des médicaments anticancéreux des tumeurs et générer des modèles précis, biologiquement pertinentes et faciles à expliquer. / In recent years, targeted drugs for the treatment of cancer have been introduced. However, a drug that works in one patient may not work in another patient. To avoid the administration of ineffective treatments, methods that predict which patients will respond to a particular drug must be developed.Unfortunately, it is not currently possible to predict the effectiveness of most anticancer drugs. Machine learning (ML) is a particularly promising approach for personalized medicine. ML is a form of artificial intelligence; it concerns the development and application of computer algorithms that improve with experience. In this case, ML algorithm will learn to distinguish between sensitive and non-sensitive tumours based on multiple genes instead of a single gene. Our study focuses on applying different approaches of ML to predict drug response of tumours to anticancer drugs and generate models which have good accuracy, as well as are biologically relevant and easy to be explained.
3

Computational frameworks to nominate context-specific vulnerabilities and therapeutic opportunities through pre-clinical Bladder Cancer models

Cantore, Thomas 01 February 2024 (has links)
During the past few decades, the landscape of available therapeutic interventions for cancer treatment has widely expanded, boosted mainly by immunotherapy progress and the precision oncology paradigm. The extensive use of pre-clinical models in cancer research has led to the discovery of new effective treatment options for patients. Despite the notable advancements, some cancer types have found minor benefits from the use of precision-oncology interventions. Characterized by a heterogeneous molecular landscape, bladder cancer is one of the most frequent cancer types in which standard-of- care treatments involve surgical operations accompanied by broad-spectrum chemotherapy. My research stems from the need for precision oncology interventions in bladder cancer and specifically focuses on the development of computational frameworks to guide the discovery of new therapeutic opportunities. This work first introduces the exploration of possible therapeutic interventions in 9p21.3 depleted bladder tumors through the analysis of an in-house large High-Content Drug Screening that tested 2,349 compounds. By combining cell count changes and morphological quantitative features extracted from fluorescence images, we nominate cytarabine as a putative candidate eliciting specific cytotoxic effects in an engineered 9p21.3 depleted bladder cancer model compared to an isogenic wild-type clone. Focusing on the development of computational methodologies to nominate robust context-specific vulnerabilities, I further describe PRODE (PROtein interactions informed Differential Essentiality), an analytical workflow that integrates protein-protein interaction data and Loss of Function screening data. I extensively tested PRODE against the most commonly used and alternative methodologies and demonstrated its superior performance when classifying reference essential and context-essential genes collected from experimental and literature sources. Furthermore, we applied PRODE to a real case scenario, seeking essential genes selectively in the context of HER2+ Breast Cancer tumors. Finally, I report the computational analyses performed on Patient-Derived Organoids (PDOs) established from a bladder cancer cohort. PDOs are demonstrated as informative models when assessing the therapeutic sensitivity of patients to drugs. Overall, this research highlights novel precision-oncology applications by ad-hoc computational analyses that address key open technical and biological challenges in the field of bladder cancer and beyond.
4

Unravelling Drug Resistance Mechanisms in Breast Cancer

von der Heyde, Silvia 04 June 2015 (has links)
No description available.

Page generated in 0.0871 seconds