• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 9
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Decomposição e largura em árvore de grafos planares livres de ciclos pares induzidos / Decomposition and width in tree of graphs to glide free of cycles induced pairs

Silva, Aline Alves da January 2007 (has links)
SILVA, Aline Alves da. Decomposição e largura em árvore de grafos planares livres de ciclos pares induzidos. 2007. 80 f. Dissertação (Mestrado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2007. / Submitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-07-08T17:52:45Z No. of bitstreams: 1 2007_dis_aasilva.pdf: 635256 bytes, checksum: 0ac10f7ac58ad14294969b2e4a830ce0 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2016-07-13T12:18:29Z (GMT) No. of bitstreams: 1 2007_dis_aasilva.pdf: 635256 bytes, checksum: 0ac10f7ac58ad14294969b2e4a830ce0 (MD5) / Made available in DSpace on 2016-07-13T12:18:29Z (GMT). No. of bitstreams: 1 2007_dis_aasilva.pdf: 635256 bytes, checksum: 0ac10f7ac58ad14294969b2e4a830ce0 (MD5) Previous issue date: 2007 / The definitions of tree decomposition and treewidth were introduced by Robertson and Seymour in their series of papers on graph minors, published during the nineties. It is known that many NP-hard problems can be polynomially solved if a tree decomposition of bounded treewidth is given. So, it is of interest to bound the treewidth of certain classes of graphs. In this context, the planar graphs seem to be specially challenging because, in despite of having many known bounded metrics (for example, chromatic number), they have unbounded treewidth. So, an alternative approach is to restrict ourselves to a subclass of planar graphs. In this work, we investigate the class of even-hole-free planar graphs. We show that if G is an even-hole-free planar graph, then it does not contain a subdivision of the 10£10 grid. So, if the grid minors of G are obtained from subdivisions, then G has treewidth at most 49. Furthermore, two polynomial, non-exact algorithms to compute a tree decomposition of a even-hole-free planar graph are given, both based on known characterizations of even-hole-free graphs. In the ¯rst one, a tree decomposition is built from basic graphs by concatenating the tree decomposition of small pieces via the clique, k-stars (k = 1; 2; 3) and 2-join cutsets. In the second one, a tree decomposition is built by including one by one the vertices of G, following their bi-simplicial order. / Os conceitos de Decomposição em Árvore e Largura em Árvore foram introduzidos por Robertson e Seymour em sua série de artigos sobre menores de grafos, publicados ao longo da década de 90. Sabe-se que muitos problemas NP - difíceis podem ser resolvidos polinomialmente para um grafo G, dada uma decomposição em Árvore de G de largura limitada. Logo, limitar a largura em árvore de uma classe de grafos torna-se um objeto de estudo de grande interesse. Neste contexto, a classe dos grafos planares se mostra bastante intrigante, uma vez que, apesar de possuir outras métricas limitadas em valores baixos (por exemplo, número cromático), não possui largura em árvore limitada. Desta forma, uma alternativa é restringir a classe estudada para uma subclasse dos grafos planares. Neste trabalho, nós investigamos a classe dos grafos planares livres de buracos pares. Nós mostramos que se G é um grafo planar livre de buracos pares, então ele não contém uma subdivisão de uma grade 10 £ 10. Portanto, se os menores grades de G são obtidos de subdivisões G tem largura em árvore no máximo 49. Além disso, dois algoritmos não exatos polinomiais para computar uma decomposição em árvore de um grafo planar livre de buracos pares são apresentados, ambos baseados em caracterizações conhecidas de tal classe de grafos. No primeiro algoritmo, uma decomposição em árvore é construída a partir de grafos básicos pela concatenação de decomposições em árvores de pedaços pequenos via os cortes clique, k-estrelas (k = 1; 2; 3) e 2-join. No segundo, uma decomposição em árvore é construída pela inclusão dos vértices de G um a um, seguindo sua ordem bi-simplicial.
12

DecomposiÃÃo e largura em Ãrvore de grafos planares livres de ciclos pares induzidos. / Decomposition and width in tree of graphs to glide free of cycles induced pairs

Aline Alves da Silva 27 August 2007 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Os conceitos de DecomposiÃÃo em Ãrvore e Largura em Ãrvore foram introduzidos por Robertson e Seymour em sua sÃrie de artigos sobre menores de grafos, publicados ao longo da dÃcada de 90. Sabe-se que muitos problemas NP - difÃceis podem ser resolvidos polinomialmente para um grafo G, dada uma decomposiÃÃo em Ãrvore de G de largura limitada. Logo, limitar a largura em Ãrvore de uma classe de grafos torna-se um objeto de estudo de grande interesse. Neste contexto, a classe dos grafos planares se mostra bastante intrigante, uma vez que, apesar de possuir outras mÃtricas limitadas em valores baixos (por exemplo, nÃmero cromÃtico), nÃo possui largura em Ãrvore limitada. Desta forma, uma alternativa à restringir a classe estudada para uma subclasse dos grafos planares. Neste trabalho, nÃs investigamos a classe dos grafos planares livres de buracos pares. NÃs mostramos que se G à um grafo planar livre de buracos pares, entÃo ele nÃo contÃm uma subdivisÃo de uma grade 10  10. Portanto, se os menores grades de G sÃo obtidos de subdivisÃes G tem largura em Ãrvore no mÃximo 49. AlÃm disso, dois algoritmos nÃo exatos polinomiais para computar uma decomposiÃÃo em Ãrvore de um grafo planar livre de buracos pares sÃo apresentados, ambos baseados em caracterizaÃÃes conhecidas de tal classe de grafos. No primeiro algoritmo, uma decomposiÃÃo em Ãrvore à construÃda a partir de grafos bÃsicos pela concatenaÃÃo de decomposiÃÃes em Ãrvores de pedaÃos pequenos via os cortes clique, k-estrelas (k = 1; 2; 3) e 2-join. No segundo, uma decomposiÃÃo em Ãrvore à construÃda pela inclusÃo dos vÃrtices de G um a um, seguindo sua ordem bi-simplicial. / The definitions of tree decomposition and treewidth were introduced by Robertson and Seymour in their series of papers on graph minors, published during the nineties. It is known that many NP-hard problems can be polynomially solved if a tree decomposition of bounded treewidth is given. So, it is of interest to bound the treewidth of certain classes of graphs. In this context, the planar graphs seem to be specially challenging because, in despite of having many known bounded metrics (for example, chromatic number), they have unbounded treewidth. So, an alternative approach is to restrict ourselves to a subclass of planar graphs. In this work, we investigate the class of even-hole-free planar graphs. We show that if G is an even-hole-free planar graph, then it does not contain a subdivision of the 10Â10 grid. So, if the grid minors of G are obtained from subdivisions, then G has treewidth at most 49. Furthermore, two polynomial, non-exact algorithms to compute a tree decomposition of a even-hole-free planar graph are given, both based on known characterizations of even-hole-free graphs. In the Ârst one, a tree decomposition is built from basic graphs by concatenating the tree decomposition of small pieces via the clique, k-stars (k = 1; 2; 3) and 2-join cutsets. In the second one, a tree decomposition is built by including one by one the vertices of G, following their bi-simplicial order.
13

Transversals of Geometric Objects and Anagram-Free Colouring

Bazargani, Saman 07 November 2023 (has links)
This PhD thesis is comprised of 3 results in computational geometry and graph theory. In the first paper, I demonstrate that the piercing number of a set S of pairwise intersecting convex shapes in the plane is bounded by O(\alpha(S)), where \alpha(S) is the fatness of the set S, improving upon the previous upper-bound of O(\alpha(S)^2). In the second article, I show that anagram-free vertex colouring of a 2\times n square grid requires a number of colours that increases with n. This answers an open question in Wilson's thesis and shows that even graphs of pathwidth 2 do not have anagram-free colouring with a bounded number of colours. The third article is a study on the geodesic anagram-free chromatic number of chordal and interval graphs. \emph{Geodesic anagram-free chromatic number} is defined as the minimum number of colours required to colour a graph such that all shortest paths between any pair of vertices are coloured anagram-free. In particular, I prove that the geodesic anagram-free chromatic number of a chordal graph G is 32p'w, where p' is the pathwidth of the subtree intersection representation graph (tree) of G, and w is the clique number of G. Additionally, I prove that the geodesic anagram-free chromatic number of an interval graph is bounded by 32p, where p is the pathwidth of the interval graph. This PhD thesis is comprised of 3 results in computational geometry and graph theory.
14

Rainbow Colouring and Some Dimensional Problems in Graph Theory

Rajendraprasad, Deepak January 2013 (has links) (PDF)
This thesis touches three different topics in graph theory, namely, rainbow colouring, product dimension and boxicity. Rainbow colouring An edge colouring of a graph is called a rainbow colouring, if every pair of vertices is connected by atleast one path in which no two edges are coloured the same. The rainbow connection number of a graph is the minimum number of colours required to rainbow colour it. In this thesis we give upper bounds on rainbow connection number based on graph invariants like minimum degree, vertex connectivity, and radius. We also give some computational complexity results for special graph classes. Product dimension The product dimension or Prague dimension of a graph G is the smallest natural number k such that G is an induced subgraph of a direct product of k complete graphs. In this thesis, we give upper bounds on the product dimension for forests, bounded tree width graphs and graphs of bounded degeneracy. Boxicity and cubicity The boxicity (cubicity of a graph G is the smallest natural number k such that G can be represented as an intersection graph of axis-parallel rectangular boxes(axis-parallel unit cubes) in Rk .In this thesis, we study the boxicity and the cubicity of Cartesian, strong and direct products of graphs and give estimates on the boxicity and the cubicity of a product graph based on invariants of the component graphs. Separation dimension The separation dimension of a hypergraph H is the smallest natural number k for which the vertices of H can be embedded in Rk such that any two disjoint edges of H can be separated by a hyper plane normal to one of the axes. While studying the boxicity of line graphs, we noticed that a box representation of the line graph of a hypergraph has a nice geometric interpretation. Hence we introduced this new parameter and did an extensive study of the same.
15

Propriétés métriques des grands graphes / Metric properties of large graphs

Ducoffe, Guillaume 09 December 2016 (has links)
Les grands réseaux de communication sont partout, des centres de données avec des millions de serveurs jusqu’aux réseaux sociaux avec plusieurs milliards d’utilisateurs.Cette thèse est dédiée à l’étude fine de la complexité de différents problèmes combinatoires sur ces réseaux. Dans la première partie, nous nous intéressons aux propriétés des plongements des réseaux de communication dans les arbres. Ces propriétés aident à mieux comprendre divers aspects du trafic dans les réseaux (tels que la congestion). Plus précisément, nous étudions la complexité du calcul de l’hyperbolicité au sens de Gromov et de paramètres des décompositions arborescentes dans les graphes. Ces paramètres incluent la longueur arborescente (treelength) et l’épaisseur arborescente (treebreadth). Au passage, nous démontrons de nouvelles bornes sur ces paramètres dans de nombreuses classes de graphes, certaines d’entre elles ayant été utilisées dans la conception de réseaux d’interconnexion des centres de données. Le résultat principal dans cette partie est une relation entre longueur et largeur arborescentes (treewidth), qui est un autre paramètre très étudié des graphes. De ce résultat, nous obtenons une vision unifiée de la ressemblance des graphes avec un arbre, ainsi que différentes applications algorithmiques. Nous utilisons dans cette partie divers outils de la théorie des graphes et des techniques récentes de la théorie de la complexité / Large scale communication networks are everywhere, ranging from data centers withmillions of servers to social networks with billions of users. This thesis is devoted tothe fine-grained complexity analysis of combinatorial problems on these networks.In the first part, we focus on the embeddability of communication networks totree topologies. This property has been shown to be crucial in the understandingof some aspects of network traffic (such as congestion). More precisely, we studythe computational complexity of Gromov hyperbolicity and of tree decompositionparameters in graphs – including treelength and treebreadth. On the way, we givenew bounds on these parameters in several graph classes of interest, some of thembeing used in the design of data center interconnection networks. The main resultin this part is a relationship between treelength and treewidth: another well-studiedgraph parameter, that gives a unifying view of treelikeness in graphs and has algorithmicapplications. This part borrows from graph theory and recent techniques incomplexity theory. The second part of the thesis is on the modeling of two privacy concerns with social networking services. We aim at analysing information flows in these networks,represented as dynamical processes on graphs. First, a coloring game on graphs isstudied as a solution concept for the dynamic of online communities. We give afine-grained complexity analysis for computing Nash and strong Nash equilibria inthis game, thereby answering open questions from the literature. On the way, wepropose new directions in algorithmic game theory and parallel complexity, usingcoloring games as a case example
16

On the effect of asymmetry and dimension on computational geometric problems

Sridhar, Vijay, Sridhar 07 November 2018 (has links)
No description available.
17

Variantes non standards de problèmes d'optimisation combinatoire / Non-standard variants of combinatorial optimization problems

Le Bodic, Pierre 28 September 2012 (has links)
Cette thèse est composée de deux parties, chacune portant sur un sous-domaine de l'optimisation combinatoire a priori distant de l'autre. Le premier thème de recherche abordé est la programmation biniveau stochastique. Se cachent derrière ce terme deux sujets de recherche relativement peu étudiés conjointement, à savoir d'un côté la programmation stochastique, et de l'autre la programmation biniveau. La programmation mathématique (PM) regroupe un ensemble de méthodes de modélisation et de résolution, pouvant être utilisées pour traiter des problèmes pratiques que se posent des décideurs. La programmation stochastique et la programmation biniveau sont deux sous-domaines de la PM, permettant chacun de modéliser un aspect particulier de ces problèmes pratiques. Nous élaborons un modèle mathématique issu d'un problème appliqué, où les aspects biniveau et stochastique sont tous deux sollicités, puis procédons à une série de transformations du modèle. Une méthode de résolution est proposée pour le PM résultant. Nous démontrons alors théoriquement et vérifions expérimentalement la convergence de cette méthode. Cet algorithme peut être utilisé pour résoudre d'autres programmes biniveaux que celui qui est proposé.Le second thème de recherche de cette thèse s'intitule "problèmes de coupe et de couverture partielles dans les graphes". Les problèmes de coupe et de couverture sont parmi les problèmes de graphe les plus étudiés du point de vue complexité et algorithmique. Nous considérons certains de ces problèmes dans une variante partielle, c'est-à-dire que la propriété de coupe ou de couverture dont il est question doit être vérifiée partiellement, selon un paramètre donné, et non plus complètement comme c'est le cas pour les problèmes originels. Précisément, les problèmes étudiés sont le problème de multicoupe partielle, de coupe multiterminale partielle, et de l'ensemble dominant partiel. Les versions sommets des ces problèmes sont également considérés. Notons que les problèmes en variante partielle généralisent les problèmes non partiels. Nous donnons des algorithmes exacts lorsque cela est possible, prouvons la NP-difficulté de certaines variantes, et fournissons des algorithmes approchés dans des cas assez généraux. / This thesis is composed of two parts, each part belonging to a sub-domain of combinatorial optimization a priori distant from the other. The first research subject is stochastic bilevel programming. This term regroups two research subject rarely studied together, namely stochastic programming on the one hand, and bilevel programming on the other hand. Mathematical Programming (MP) is a set of modelisation and resolution methods, that can be used to tackle practical problems and help take decisions. Stochastic programming and bilevel programming are two sub-domains of MP, each one of them being able to model a specific aspect of these practical problems. Starting from a practical problem, we design a mathematical model where the bilevel and stochastic aspects are used together, then apply a series of transformations to this model. A resolution method is proposed for the resulting MP. We then theoretically prove and numerically verify that this method converges. This algorithm can be used to solve other bilevel programs than the ones we study.The second research subject in this thesis is called "partial cut and cover problems in graphs". Cut and cover problems are among the most studied from the complexity and algorithmical point of view. We consider some of these problems in a partial variant, which means that the cut or cover property that is looked into must be verified partially, according to a given parameter, and not completely, as it was the case with the original problems. More precisely, the problems that we study are the partial multicut, the partial multiterminal cut, and the partial dominating set. Versions of these problems were vertices are

Page generated in 0.0386 seconds