• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 3
  • Tagged with
  • 37
  • 37
  • 15
  • 12
  • 12
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Constraining global biogenic emissions and exploring source contributions to tropospheric ozone: modeling applications.

Shim, Changsub 26 June 2006 (has links)
Biogenic isoprene plays an important role in tropospheric chemistry. We use HCHO column measurements by the Global Ozone Monitoring Experiment (GOME) to constrain isoprene emissions. Using the global Goddrad Earth Observing SystemChemistry (GEOS-Chem) as the forward model, a Bayesian inversion of GOME HCHO observations from September 1996 to August 1997 is conducted. Column contributions to HCHO from 12 sources including 10 terrestrial ecosystem groups, biomass burning, and industry are considered and inverted for 8 geographical regions globally. The a posteriori solution reduces the model biases for all regions, and estimates the annual global isoprene emissions of 566 Tg C yr-1, ~50% larger than the a priori estimate. Compared to the Global Emissions Inventory Activity (GEIA) inventory (~500 Tg C yr-1), the a posteriori isoprene emissions are generally higher at mid latitudes and lower in the tropics. This increase of global isoprene emissions significantly affects tropospheric chemistry, decreasing the global mean OH concentration by 10.8% to 0.95106 molecules/cm3. The atmospheric lifetime of CH3CCl3 increases from 5.2 to 5.7 years. Positive matrix factorization (PMF), an advanced method for source apportionment, is applied to TRAnsport of Chemical Evolution over the Pacific (TRACE-P) measurements and it is found that cyanogenesis in plants over Asia is likely an important emission process for CH3COCH3 and HCN. This approach also is applied to estimate source contributions to the tropospheric ozone (O3) with Tropospheric Ozone Production about the Spring Equinox (TOPSE) and TRACE-P measurements. The corresponding GEOS-Chem simulations are applied to the same factor-projected space in order to evaluate the model simulations. Intercontinental transport of pollutants is most responsible for increasing trend of springtime O3, while stratospheric influence is the largest contributions to troposperic O3 variability at northern middle and high latitudes. On the other hand, the overall tropospheric contributions to O3 variability are more important at northern low latitudes by long-range transport, biomass burning, and industry/urban emissions. In general, the simulated O3 variabilities are comparable with those of observations. However, the model underestimates the trends of and the contributions to O3 variability by long-range transport of O3 and its precursors at northern middle and high latitudes.
32

Regional Air Quality: Photochemical Modeling for Policy Development and Regulatory Support

Bergin, Michelle Silvagni 05 December 2006 (has links)
Two long-standing air quality challenges in the United States are the control of tropospheric ozone and particulate matter, both of which are responsible for widespread damage to human health and the environment. This thesis presents three modeling applications in support of policy development and regulatory actions for control of these pollutants in the eastern United States, taking advantage of recent advancements in sensitivity techniques in a regional Eulerian photochemical air quality model. A broad evaluation of regional atmospheric pollution and transboundary air quality management, including the international scale, and an analysis of successful transboundary management efforts are also presented. The first modeling application is an evaluation of local and interstate impacts on ozone and fine particulate matter (PM2.5) from ground-level and elevated nitrogen oxide plus nitrogen dioxide and from sulfur dioxide emissions from individual states. This analysis identifies states responsible for a significant amount of regional secondary pollution, and states which do not have independent control over much of their pollution concentrations. An average of approximately 77% of each state s ozone and PM2.5 concentrations that are sensitive to the emissions evaluated are found to be formed from emissions from other states. The second application is an assessment of impacts from emissions from a single power-plant on resulting regional ozone concentrations. Three sensitivity techniques and two 3D photochemical models are applied. Ozone increases greater than 0.5 ppbv are found over eight states downwind from the power-plant. The third application supports the extension of a body of research aimed at advancing understanding of the ozone formation potential, or reactivity , of VOCs for use in regional-scale, rather than urban-scale, regulations. Air quality impacts of VOCs emissions from solvent use and manufacture are presented, scientific barriers to accounting for reactivity in regulations are discussed, current and upcoming regulatory applications are described, and results from a regional scale evaluation of reactivity quantification are presented.
33

Long-term global observations of tropospheric formaldehyde retrieved from spaceborne nadir UV sensors / Télédétection spatiale du formaldéhyde dans la troposphère, à l'échelle globale et sur le long terme, à partir de senseurs UV

De Smedt, Isabelle 09 June 2011 (has links)
Atmospheric formaldehyde (H2CO) is an intermediate product common to the degradation of many volatile organic compounds and therefore it is a central component of the tropospheric chemistry. While the global formaldehyde background is due to methane oxidation, emissions of non-methane volatile organic compounds (NMVOCs) from biogenic, biomass burning and anthropogenic continental sources result in important and localised enhancements of the H2CO concentration. Recent spaceborne nadir sensors provide an opportunity to quantify the abundance of tropospheric formaldehyde at the global scale, and thereby to improve our knowledge of NMVOC emissions. This is essential for a better understanding of the processes that control the production and the evolution of tropospheric ozone, a key actor in air quality and climate change, but also of the hydroxyl radical OH, the main cleansing agent of our troposphere. For this reason, H2CO satellite observations are increasingly used in combination with tropospheric chemistry transport models to constrain NMVOC emission inventories in so-called top-down inversion approaches. Such inverse modelling applications require well characterised satellite data products consistently retrieved over long time periods.<p>This work reports on global observations of formaldehyde columns retrieved from the successive solar backscatter nadir sensors GOME, SCIAMACHY and GOME-2, respectively launched in 1995, 2002 and 2006. The retrieval procedure is based on the differential optical absorption spectroscopy technique (DOAS). Formaldehyde concentrations integrated along the mean atmospheric optical path are derived from the recorded spectra in the UV region, and further converted to vertical columns by means of calculated air mass factors. These are obtained from radiative transfer simulations, accounting for cloud coverage, surface properties and best-guess H2CO profiles, the latter being derived from the IMAGES chemistry transport model. A key task of the thesis has consisted in the optimisation of the H2CO retrieval settings from multiple sensors, taking into account the instrumental specificities of each sounder. As a result of these efforts, a homogeneous dataset of formaldehyde columns covering the period from 1996 to 2010 has been created. This comes with a comprehensive error budget that treats errors related to the spectral fit of the columns as well as those associated to the air mass factor evaluation. The time series of the GOME, SCIAMACHY and GOME-2 H2CO observations is shown to be consistent and stable over time. In addition, GOME-2 brings a significant reduction of the noise on spatiotemporally averaged observations, leading to a better identification of the emission sources. Our dataset is used to study the regional formaldehyde distribution, as well as its seasonal and interannual variations, principally related to temperature changes and fire events, but also to anthropogenic activities. Moreover, building on the quality of our 15-year time series, we present the first analysis of long-term changes in the H2CO columns. Positive trends, in the range of 1.5 to 4% yr-1, are found in Asia, more particularly in Eastern China and India, and are related to the known increase of anthropogenic NMVOC emissions in these regions. Finally, our dataset has been extensively used in several studies, in particular by the BIRA-IASB modelling team to constrain NMVOC emission fluxes. The results demonstrate the high potential of satellite data as top-down constraint for biogenic and biomass burning NMVOC emission inventories, especially in Tropical ecosystems, in Southeastern Asia, and in Southeastern US. <p><p>Le formaldéhyde (H2CO) joue un rôle central dans la chimie de la troposphère en tant que produit intermédiaire commun à la dégradation chimique de la plupart des composés organiques volatils dans l’atmosphère. L’oxydation du méthane est responsable de plus de la moitié de la concentration moyenne globale du formaldéhyde. Sur les continents en revanche, les hydrocarbures non-méthaniques (NMVOCs) émis par la végétation, les feux de biomasse et les activités humaines, augmentent de façon significative et localisée la concentration de H2CO. Les récents senseurs satellitaires à visée nadir offrent la possibilité de quantifier à l’échelle globale l’abondance du formaldéhyde dans la troposphère et de ce fait, d’améliorer notre connaissance des émissions de NMVOCs. Ceci est essentiel à la compréhension des mécanismes contrôlant la production et l’évolution de l’ozone troposphérique, élément clé pour la qualité de l’air et les changements climatiques, mais aussi du composé hydroxyle OH, le principal agent nettoyant de notre troposphère. C’est pourquoi, une méthode de plus en plus répandue pour améliorer les inventaires d’émissions des NMVOCs consiste en l’utilisation d’observations satellitaires de H2CO en combinaison avec un modèle de chimie et de transport troposphérique, dans une approche appelée modélisation inverse. Ce genre d’application demande des produits satellitaires bien caractérisés et dérivés de façon cohérente sur de longues périodes de temps.<p>Le travail présenté dans ce manuscrit porte sur l’inversion des colonnes de formaldéhyde à partir de spectres de la radiation solaire rétrodiffusée par l’atmosphère terrestre, mesurés par les senseurs GOME, SCIAMACHY et GOME-2, lancés successivement en 1995, 2002 et 2006. La méthode d’inversion est basée sur la spectroscopie d’absorption optique différentielle (DOAS). Les concentrations de formaldéhyde intégrées le long du chemin optique moyen dans l’atmosphère sont dérivées à partir des spectres mesurés, et ensuite transformées en colonnes verticales par le biais de facteurs de conversion appelés facteurs de masse d’air. Ces derniers sont calculés à l’aide d’un modèle de transfert radiatif, en tenant compte de la présence de nuages, des propriétés de la surface terrestre et la distribution verticale supposée du formaldéhyde, fournie par le modèle IMAGES. Un des objectifs principaux de la thèse a été d’optimiser les paramètres d’inversion pour H2CO, et ceci pour les trois senseurs, tout en tenant compte des spécificités de chaque instrument. Ces efforts ont conduit à la création d’un jeu de données homogène, couvrant la période de 1996 à 2010. Les colonnes sont fournies avec un bilan d’erreur complet, incluant les erreurs liées à l’inversion des concentrations dans les spectres, ainsi que celles provenant de l’évaluation des facteurs de masse d’air. La série temporelle des observations de GOME, SCIAMACHY et GOME-2 présente une bonne cohérence et stabilité sur toute la période. Nous montrons aussi que la meilleure couverture terrestre de GOME-2 entraîne une réduction significative du bruit sur les observations moyennées, permettant une meilleure identification des sources d’émission. Notre jeu de données est exploité pour étudier la distribution régionale du formaldéhyde, ainsi que ses variations saisonnières et interannuelles, principalement liées aux variations de température et aux feux de végétation, mais aussi aux activités anthropiques. De plus, en s’appuyant sur la qualité de la série temporelle de 15 ans, nous présentons la première analyse des variations à long terme des concentrations de H2CO. Des tendances positives, de l’ordre de 1.5 à 4% par an, sont observées en Asie, en particulier dans l’est de la Chine et en Inde, liées à l’augmentation des émissions anthropiques d’hydrocarbures dans ces régions. Finalement, nos données ont été largement exploitées par le groupe de modélisation de l’IASB pour faire des études de modélisation inverse des émissions de NMVOCs. Les résultats démontrent le haut potentiel des données satellitaires pour contraindre les inventaires d’émissions dues à la végétation et aux feux de biomasse, particulièrement dans les écosystèmes tropicaux, en Asie du sud-est, et dans le sud-est des Etats-Unis. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
34

L'impact de l'activité humaine sur la composition chimique de la troposphère au-dessus de l'Océan Pacifique: développement d'un modèle téléscopique de chimie et de transport atmosphériques et interprétation des résultats de la campagne de mesure MLOPEX

Ginoux, Paul 19 September 1997 (has links)
<p align='justify'>De manière à mieux comprendre l'impact des émissions anthropiques sur la troposphère reculée, les concentrations d'un nombre important de composés atmosphériques ont été mesurés dans la troposphère libre au-dessus d'Hawaii durant la campagne Mauna Loa Observatory Photochemistry Experiment (MLOPEX) accomplie au cours des années 1991 et 1992. Le constituant chimique fondamental pour évaluer cet impact est le radical hydroxyle OH qui fut mesuré au printemps et en été de l'année 1992. La variation diurne de la direction du vent génère pendant la journée un mélange des masses d'air de la couche limite planétaire avec la troposphère libre. Actuellement les modèles régional et global de chimie troposphérique ne peuvent tenir compte à la fois du transport à grande échelle et du mélange local. Nous avons développé un modèle tridimensionnel qui nous permet d'analyser la chimie et la dynamique troposphérique à ces deux échelles. Pour ce faire, nous avons utilisé une grille non-structurée qui offre un moyen efficace de caractériser la région d'Hawaii à l'aide d'une haute résolution et le restant de l'hémisphère Nord avec une résolution qui décroît au fur et à mesure que l'on s'éloigne d'Hawaii. La distribution de 46 composés gazeux avec 138 réactions, incluant une chimie détaillée des hydrocarbures non-méthaniques (isoprène, éthane, éthène, propène et alpha-pinène) est calculée avec un pas de temps de 20 minutes. A l'aide de notre modèle nous avons simulé une période de huit jours pour chacune des saisons. Les résultats des simulations ont été comparés aux observations et interprétés à l'aide d'études de rétro-trajectoires, de traceurs passifs et de bilans chimiques local et régional de l'ozone et de ses précurseurs.</p><p><p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
35

Developpement d'instruments pour la détection de constituants troposphériques minoritaires par spectroscopie différentielle dans le domaine UV-visible

Vandaele, Ann Carine 29 October 1997 (has links)
<p align="justify">L'étude des phénomènes physico-chimiques de l'atmosphère nécessite la connaissance préalable des caractéristiques de chacun de ses constituants, ainsi que de leurs distributions spatiales et temporelles. Les méthodes spectroscopiques permettent la détection simultanée de nombreux constituants atmosphériques par la mesure quantitative de leurs absorptions. Dans le domaine UV-visible, ces techniques se basent sur la loi de Beer-Lambert, dont l'application nécessite la connaissance d'un spectre de référence exempt d'absorption. Il est impossible d'obtenir un tel spectre dans le cas des mesures atmosphériques. On a alors recourt à la technique dite de spectroscopie d'absorption différentielle (Differential Optical Absorption Spectroscopy) qui analyse les composantes des absorptions variant rapidement en fonction de la longueur d'onde.</p><p><p align="justify">Trois instruments ont été développés dans le cadre de ce travail pour la mesure par spectroscopie d'absorption différentielle dans le domaine UV-visible. Le premier utilise un spectromètre par transformée de Fourier, les deux autres des spectromètres à réseau associés soit à une barrette de photodiodes soit à un détecteur de type CCD. Ces instruments ont été conçus dans le but de fournir des mesures de divers constituants (03, SO2, NO2, HNO2, H2CO, toluène, benzène) de manière automatique et en utilisant des trajets d'absorption courts ( < 1 km). Les performances de chacun de ces instruments ont été évaluées au cours de différentes campagnes de mesure. Le spectromètre par transformée de Fourier s'avère être un outil performant pour de telles mesures, son principal avantage étant de posséder une calibration en longueur d'onde interne, précise et reproductible. Les instruments utilisant un spectromètre à réseau associé à un détecteur multi-éléments présentent un certain nombre d'inconvénients rendant peu aisées les mesures troposphériques sur de courtes distances. Ces inconvénients sont liés soit au spectromètre ( calibration en longueur d'onde externe, modification de celle-ci au cours du temps) ou aux détecteurs ( gains différents pour chacun des éléments sensibles du détecteur, phénomènes d'interférence au niveau des fenêtres de protection). Ces problèmes augmentent la complexité de l'analyse des spectres atmosphériques.</p><p><p align="justify">Un paramètre d'importance primordiale pour la détection d'un polluant, est sa section efficace d'absorption. Nous avons mesuré la section efficace de trois molécules d'intérêt atmosphérique, SO2, CS2 et NO2. Ces spectres ont été obtenus à l'aide d'un spectromètre par transformée de Fourier, aux résolutions de 2 et 16 cm-1. La dépendance vis-à-vis de la température a été confirmée dans le cas du NO2. Pour cette molécule, un effet de pression a en outre été observé pour la première fois dans le domaine spectral 12000 20000 cm-1 (500-830 nm). Cet effet est important et peut engendrer des variations de 45% de l'intensité de la section efficace lorsque la pression partielle de NO2 varie de 0.02 à 1.0 torr. L'influence du choix des sections efficaces sur les mesures stratosphériques de NO2 a également été mise en évidence. L'utilisation de sections efficaces obtenue à basse température (220 K) implique une diminution de 20% de la quantité de NO2 mesurée mais également une diminution de l'erreur sur cette mesure. Ceci indique la nécessité de tenir compte de la dépendance des sections efficaces de NO2 à la température lors de l'analyse de spectres stratosphériques.</p><p><p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
36

Tropospheric ozone and photochemical processing of hydrocarbons : laboratory based kinetic and product studies

Leather, Kimberley January 2012 (has links)
Laboratory based temperature-dependent kinetics and product yields for alkene ozonolysis and the reaction of CH3O2 with ClO and BrO have been measured via chamber studies and a turbulent flow tube coupled to CIMS (Chemical Ionisation Mass Spectrometry). In order to gain a better understanding of the fate of the products formed during hydrocarbon oxidation and their subsequent impact on the ozone budget (and so the oxidising capacity of the atmosphere) it is imperative to know the rate at which these reactions proceed and to identify their product yields. As tropospheric temperature varies, Arrhenius parameters were determined during the ozonolysis of selected alkenes. The temperature dependent kinetic database was extended and the activation energies for the ozonolysis of selected alkenes were correlated with an existing SAR (Structure Activity Relationship). Given the myriad organic species in the atmosphere, SARs are useful tools for the prediction of rate coefficients. Inclusion of Arrhenius parameters into the SAR allows for prediction over a range of temperatures, improving the conditions reflected in models. Achieving mass balance for alkene ozonolysis has proven to be a difficult challenge considering the numerous pathways of the Criegee Intermediate (CI). The product yield of formic acid – an organic acid with significant atmospheric implications which is under predicted by models – was determined as a function of relative humidity during ethene ozonolysis. This reaction exhibited a strong water dependence which lead to the prediction of the reaction rate of the CI with water which ranges between 1 × 10-12 – 1 × 10-15 cm3 molecule-1 s-1 and will therefore dominate its loss with respect to bimolecular processes in the atmosphere. Peroxy radicals, strongly influence the total oxidising capacity of the troposphere. The reaction of peroxy radicals with halogen oxides is recognised to be responsible for considerable ozone depletion in the atmosphere, exacerbated by reactive halogens (X, XO) taking part in catalytic cycles. Arrhenius parameters were determined for ClO + CH3O2 and BrO + CH3O2. Temperature is an important parameter affecting rate, exemplified here as the reaction involving ClO exhibited a positive temperature dependence whereas for BrO a negative temperature dependence was evident. As a consequence, the impact of ClO + CH3O2 with respect to ozone loss is diminished. Global modelling predicts a reduction in ozone loss by a factor of around 1.5 and implicates regions such as clean marine environments rather than the polar stratosphere. Conversely, a more pronounced temperature dependence for the reaction of BrO with CH3O2 placed particular importance on lower stratospheric chemistry where the modelled CH3O2 oxidation is doubled. The main products for this reaction were identified to be HOBr and CH2O2. The decomposition of CH2O2 could enhance HOx in the lower and middle stratosphere and contribute to a significant source of HOx in the upper troposphere. Bimolecular reaction of CH2O2 with water could also provide a none negligible source HC(O)OH in the upper troposphere. Alkenes and peroxy radicals undergo chemical processing in the atmosphere whilst acting as a source and sink of ozone and thus can impose detrimental effects on the biosphere, climate and air quality of the Earth.
37

Chemometric analysis of full scan direct mass spectrometry data for the discrimination and source apportionment of atmospheric volatile organic compounds measured from a moving vehicle.

Richards, Larissa Christine 30 August 2021 (has links)
Anthropogenic emissions into the troposphere can impact air quality, leading to poorer health outcomes in the affected areas. Volatile organic compounds (VOCs) are a group of chemical compounds, including some which are toxic, that are precursors in the formation of ground-level ozone and secondary organic aerosols. VOCs have a variety of sources, and the distribution of atmospheric VOCs differs significantly over time and space. Historically, the large number of chemical species present at low concentrations (parts-per-trillion to parts-per-billion by volume) have made VOCs difficult to measure in ambient air. However, with improvements in analytical instrumentation, these measurements are becoming more common place. Direct mass spectrometry (MS), such as membrane introduction mass spectrometry (MIMS) and proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) facilitate real-time, continuous measurements of VOCs in air, with full scan mass spectral data capturing changes in chemical composition with high temporal resolution. Operated on-road, mobilized direct MS has been used for quantitative mapping of VOCs at the neighborhood scale, but identifying VOC sources based on the observed mixture of molecules in the full scan MS dataset has yet to be explored. This dissertation describes the use of chemometric techniques to interrogate full scan MS data, and the progression from discriminating VOC samples of known chemical composition based on full scan MIMS data through to the apportionment of VOC sources measured continuously with a PTR-ToF-MS system operating in a moving vehicle. Lab‐constructed VOC samples of known chemical composition and concentration demonstrated the use of principal component analysis (PCA) to discriminate, and k-nearest neighbours to classify, samples based on normalized full scan MIMS data. Furthermore, multivariate curve resolution-alternating least squares (MCR-ALS) was used to resolve mixtures into molecular component contributions. PCA was also used to discriminate ‘real-world’ VOC mixtures (e.g., woodsmoke VOCs, headspace above aqueous hydrocarbon samples) of unknown chemical composition measured by MIMS. Using vehicle mounted MIMS and PTR-ToF-MS systems, full scan MS data of ambient atmospheric VOCs were collected and PCA was applied to the normalized full scan MS data. A supervised analysis performed PCA on samples collected near known VOC sources, while an unsupervised analysis using PCA followed by cluster analysis was used to identify groups in a continuous, time series PTR-ToF-MS dataset measured between Nanaimo and Crofton, British Columbia (BC). In both the supervised and unsupervised analysis, samples impacted by emissions from different sources (e.g., internal combustion engines, sawmills, composting facilities, pulp mills) were discriminated. With PCA, samples were discriminated based on differences in the observed full scan MS data, however real-world samples are often impacted by multiple VOC sources. MCR-weighted ALS (MCR-WALS) was applied to the continuous, time series PTR-ToF-MS data from three field campaigns on Vancouver Island, BC for source apportionment. Variable selection based on signal-to-noise ratios was used to reduce the mass list while retaining the observed m/z that capture changes in the mixture of VOCs measured, improving model results, and reducing computation time. Both point (e.g., anthropogenic hydrocarbon emissions, pulp mill emissions) and diffuse (e.g., VOCs from forest fire smoke) VOC sources were identified in the data, and were apportioned to determine their contributions to the measured samples. The data analyzed captured fine scale changes in the ambient VOCs present in the air, and geospatial maps of each individual source, and of the source apportionment were used to visualize the distribution of VOC sources across the sampling area. This work represents the first use of MCR-WALS to identify and apportion ambient VOC sources based on continuous PTR-ToF-MS data measured from a moving vehicle. The methods described can be applied to larger scale field campaigns for the source apportionment of VOCs across multiple days to capture diurnal and seasonal variations. Identifying spatial and temporal trends in the sources of VOCs at the regional scale can help to identify pollution ‘hot spots’ and inform evidence-based public policy for improving air quality. / Graduate / 2022-08-17

Page generated in 0.1726 seconds