• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 5
  • 2
  • 1
  • Tagged with
  • 23
  • 23
  • 23
  • 12
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Single Cell Biomechanical Phenotyping using Microfluidics and Nanotechnology

Babahosseini, Hesam 20 January 2016 (has links)
Cancer progression is accompanied with alterations in the cell biomechanical phenotype, including changes in cell structure, morphology, and responses to microenvironmental stress. These alterations result in an increased deformability of transformed cells and reduced resistance to mechanical stimuli, enabling motility and invasion. Therefore, single cell biomechanical properties could be served as a powerful label-free biomarker for effective characterization and early detection of single cancer cells. Advances and innovations in microsystems and nanotechnology have facilitated interrogation of the biomechanical properties of single cells to predict their tumorigenicity, metastatic potential, and health state. This dissertation utilized Atomic Force Microscopy (AFM) for the cell biomechanical phenotyping for cancer diagnosis and early detection, efficacy screening of potential chemotherapeutic agents, and also cancer stem-like/tumor initiating cells (CSC/TICs) characterization as the critical topics received intensive attention in the search for effective cancer treatment. Our findings demonstrated the capability of exogenous sphingosine to revert the aberrant biomechanics of aggressive cells and showed a unique, mechanically homogeneous, and extremely soft characteristic of CSC/TICs, suitable for their targeted isolation. To make full use of cell biomechanical cues, this dissertation also considered the application of nonlinear viscoelastic models such as Fractional Zener and Generalized Maxwell models for the naturally complex, heterogeneous, and nonlinear structure of living cells. The emerging need for a high-throughput clinically relevant alternative for evaluating biomechanics of individual cells led us to the development of a microfluidic system. Therefore, a high-throughput, label-free, automated microfluidic chip was developed to investigate the biophysical (biomechanical-bioelectrical) markers of normal and malignant cells. Most importantly, this dissertation also explored the biomechanical response of cells upon a dynamic loading instead of a typical transient stress. Notably, metastatic and non-metastatic cells subjected to a pulsed stress regimen exerted by AFM exhibited distinct biomechanical responses. While non-metastatic cells showed an increase in their resistance against deformation and resulted in strain-stiffening behavior, metastatic cells responded by losing their resistance and yielded slight strain-softening. Ultimately, a second generation microfluidic chip called an iterative mechanical characteristics (iMECH) analyzer consisting of a series of constriction channels for simulating the dynamic stress paradigm was developed which could reproduce the same stiffening/softening trends of non-metastatic and metastatic cells, respectively. Therefore, for the first time, the use of dynamic loading paradigm to evaluate cell biomechanical responses was used as a new signature to predict malignancy or normalcy at a single-cell level with a high (~95%) confidence level. / Ph. D.
22

La glycine décarboxylase désensibilise les cellules initiatrices de tumeur à la metformine

Moineau-Vallée, Karine 07 1900 (has links)
Le cancer du pancréas est l’un des plus chimiorésistants, avec un taux de survie sur 5 ans inférieur à 5%. La chimiorésistance pourrait être due à la présence de cellules initiatrices de tumeur (TICs), une petite sous-population des cellules tumorales possédant la capacité de régénérer une nouvelle tumeur. Il a été démontré que la metformine cible les TICs par un mécanisme non élucidé. Il est connu que la metformine affecte le métabolisme du carbone. Il a également été démontré que le métabolisme du carbone, plus précisément la glycine décarboxylase (GLDC), est à la fois nécessaire et suffisant à l’acquisition de propriétés d’initiation tumorale. Nous proposons que la metformine cible les cellules initiatrices de tumeur en affectant le métabolisme du carbone. Nous avons utilisé des lignées cellulaires dérivées d’un modèle murin de cancer du pancréas pour comparer l’expression génique de lésions bénignes versus malignes. Les cellules malignes surexpriment Gldc. La metformine diminue l’expression de Gldc, et la surexpression de Gldc diminue la sensibilité à la metformine dans un essai de sphères tumorales. La metformine induit une augmentation du ratio NADP+/NADPH, et la surexpression de Gldc empêche cette augmentation. Nous proposons que la metformine diminue l’expression de Gldc, ce qui cause une diminution du flux du métabolisme du carbone, et donc une diminution de la production de NADPH par ce dernier. L’augmentation du ratio NADP+/NADPH inhibe la synthèse des acides gras et la régénération de la glutathione, ce qui pourrait expliquer la diminution de la formation de sphères tumorales sous traitement metformine. / Pancreatic cancer is one of the most chemoresistant cancers, with a 5-year survival rate lesser than 5%. Chemoresistance might be due to the presence of tumor-initiating cells (TICs), a small subpopulation of tumor cells with stem-like characteristics which possess the unique ability to self-renew and to generate a new tumor. Metformin has been shown to affect TICs in various cancer types, but the mechanism through which it does so is unclear. It is known that metformin affects one-carbon metabolism. It has also been shown that one-carbon metabolism, more precisely the glycine decarboxylase (GLDC) enzyme, is both necessary and sufficient to the acquisition of tumor-initiating properties. Considering this, we propose that metformin affects TICs by targeting one-carbon metabolism. Using cell lines derived from a genetically engineered mouse model of pancreatic cancer, we compared gene expression data from cells derived from benign pancreatic neoplasia with cells derived from pancreatic ductal adenocarcinoma (PDAC), and found that PDAC cells exhibited a dramatic increase in Gldc expression. Metformin treatment decreases Gldc expression in PDAC cell lines, and Gldc overexpression greatly decreases metformin sensitivity in a tumor sphere assay. Metformin induces an increase in NADP+/NADPH ratio, which is rescued by Gldc overexpression. We propose a model in which metformin decreases Gldc expression, which causes reduced flux through mitochondrial one-carbon metabolism. This results in decreased NADPH production by this pathway. This increase in NADP+/NADPH ratio impairs fatty acid biosynthesis and glutathione regeneration. Together these effects might explain the decrease of tumor sphere formation under metformin treatment.
23

Zytogenetische Charakterisierung der Glioblastomzelllinie G112 in Bezug auf tumorstammzellähnliche Eigenschaften und Strahlentherapie / Cytogenetic Characterisation Of Glioblastoma Cell Line G112 Concerning Tumor Stem Cell Like Properties And Radiotherapy

Rippl, Marina 07 January 2013 (has links)
No description available.

Page generated in 0.0835 seconds