• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DIETARY MODULATION OF MYELOID DERIVED SUPPRESSOR CELL BIOLOGY IN PATHOPHYSIOLOGY AND PHYSIOLOGY

Ryan D Calvert (6554648) 15 May 2019 (has links)
T-cells are present in the immune system to fight against invaders. Once their job is done, suppressing their activity is an important step in maintaining a proper immune response. Myeloid derived suppressor cells (MDSCs) are immune cells that suppress T-cell activity. Currently, MDSCs are defined as a heterogeneous population of immature cells that are derived in the bone marrow and travel to the site of inflammation or cancer. Two major subtypes of MDSCs have been identified in mice and humans, monocyte-like MDSCs (M-MDSC) and granulocyte MDSCs (G-MDSC). G-MDSCs typically make up the majority of the total population of MDSCs but are less T-cell suppressive than M-MDSCs. One of the major problems in the study of MDSCs is that the current marker system for subtypes does not differentiate between precursor MDSCs (lacking suppressive ability) and functional MDSCs (those with suppressive ability). Therefore, using cancer models in mice, we investigated the development and potential to classify precursor MDSCs from functional MDSCs. While MDSCs have been highlighted as a target cell to inhibit in cancer, in other conditions, such as pregnancy, MDSCs have been shown to be beneficial in maintaining a normal pregnancy. Therefore, targeting the increase of MDSCs in abnormal pregnancy conditions like pre-eclampsia may act as a prevention or therapeutic strategy. Finally, it is known that many dietary components can act as modulators of immune cells. Specifically, the polyphenol like phytochemical, curcumin has been shown to act as an anti-inflammatory agent with the potential to modulate multiple immune cells. Therefore, we propose two different studies to investigate the potential of curcumin as either an inhibitor and/or promotor of MDSCs in a disease-specific context. Together the role of phytochemicals as immunomodulators of MDSCs is still very young, in part due to the complexity of phytochemicals themselves, but the studies cited here provide evidence that the field is ripe for additional questions to be asked.
2

Effect of Tumor Microenvironmental Conditions on Non Small Cell Lung Cancer

Arikatla, Swetha 01 January 2017 (has links)
Tumor microenvironmental conditions play a vital role in promoting metastasis and tumor recurrence. Due to inefficient vasculature, cancer cells experience hypoxia, glucose deprivation and low pH even during the early stages of tumor growth. Tumor cells are proposed to adapt to these microenvironmental conditions by acquiring increased migratory and invasion potential and tumor initiating ability. Our research addresses the effect of these biochemical factors of the tumor microenvironment (TME) on motility, epithelial to mesenchymal transition (EMT) and stemness of non-small cell lung cancer (NSCLC). NCI-H292 and NCI-H1650 NSCLC cell lines were used to measure the effect of the above mentioned TME conditions. Apart from acidic pH, low glucose and hypoxia, the effect of high glucose conditions was also measured on H292 and H1650 cell lines. Acidic pH, high and low glucose conditions were observed to have no effect on the motility, EMT and stemness of H1650 cell line. Hence, use of this cell line was discontinued and no further treatment conditions were tested on this cell line. In H292 cell line, acidic pH, low glucose and tumor like conditions combined together (acidic pH + low glucose + hypoxia) [AP+LG+HYP] significantly decreased motility whereas hypoxia significantly increased the motility of H292 cells. High glucose did not affect the motility of H292 cells. Although N-cadherin, a mesenchymal marker, expression was significantly upregulated by acidic pH, high and low glucose conditions, no direct correlation was observed between N-cadherin expression and motility. E-cadherin expression was not affected by acidic pH, high and low glucose conditions. An increase in N-cadherin expression and no change in E-cadherin expression under these conditions might be an indication of partial EMT. Hypoxia and AP+LG+HYP did not alter the expression of E-cadherin and N-cadherin. Although expression of vimentin, another mesenchymal marker, and Sox2, a cancer stem cell marker (CSC), was observed at the mRNA level, no expression of vimentin and Sox2 proteins was observed in H292 cells under any of these treatment conditions. The expression of OCT4, another CSC marker, was also not observed at the protein level in H292 cells. HIF-1α expression was observed in H292 cells under normoxic conditions and was unaffected by hypoxia and AP+LG+HYP. Therefore our research indicates that the effect of these TME conditions might be different on different cancer cell lines or cancer types. Not all cancers may depend on EMT for metastasis. An increase in metastasis under hypoxia may be independent of HIF-1α.

Page generated in 0.114 seconds