• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contrôle de nano-antennes optiques par une commande électrique : tuner plasmonique et transduction

Berthelot, Johann 11 October 2011 (has links) (PDF)
Les nano-antennes optiques constituent un élément clé pour le contrôle et l'intéraction lumière/matière à l'échelle nanométrique. Ces systèmes opèrent dans le domaine de l'optique visible et proche infrarouge. Les propriétés de ces composants sont contrôlées en modifiant la taille, la forme et le matériau utilisé. Ces paramètres sont ajustés par les processus de fabrication de l'antenne. Dans le domaine des radio-fréquences, le tuner permet d'ajuster la fréquence de résonance de l'antenne de façon dynamique. Nous avons dans le cadre de cette thèse voulu adapter ce concept de tuner au domaine de l'optique. Le principe employé consiste à changer la résistance de charge de l'antenne, c'est-à-dire l'indice du milieu électrique environnant. Pour cela, nous avons utilisé un matériau anisotrope constitué de molécules de cristaux liquides. L'indice optique est alors modifié par l 'application d'un champ électrique statique. Le changement des propriétés spectrales ainsi que de diffusion d'une antenne de type dimère sont ici démontrées.Toujours en analogie avec les antennes radio-fréquences, nous avons étudié la propriété de transduction électron-photon dans le cas des antennes optiques. Dans ce but, nous avons considéré deux configurations. La première concerne l'utilisation de nanotubes de carbone placés dans une configuration de transistor à effet de champ. Ces objets émettent de la lumière par une recombinaison de paires électrons-trous dans le domaine des longueurs d'ondes Télécom. La seconde configuration emploie des jonctions tunnels fabriquées par électro-migration. Dans ce cas là, la jonction est assimilée à une antenne à interstice. A cause des faibles dimensions des jonctions (autour de 1 nm), nous nous sommes intéressés à la réponse en optique non linéaire de ses objets. Cette technique permet de localiser la jonction tunnel grâce à une forte exaltation du signal. L'etude des différentes caractérisques de ses jonctions sont ici présentées. Une fois la transduction du signal réalisée par l'antenne radiofréquence, celui-ci est acheminé via une ligne de transmission. A l' échelle nanométrique, les guides plasmoniques s'avèrent être un type de structure approprié. Dans ce cas, les guides peuvent à la fois servir d''electrode mais aussi de guide. Dans le cadre de cette thèse, nous avons étudié par microscopie à fuites radiatives, dans l'espace direct et réciproque, la plus simple des géométries : le guide ruban métallique. Nous avons cherché à comprendre, pourquoi ce type de structure présente une largeur de coupure.
2

Optical nano-antennas : passive properties and active control / Nano-antennes optiques : propriétés passives et contrôle actif

Huang, Caijin 12 March 2010 (has links)
Les nano-antennes optiques sont de nouveaux éléments, généralement métalliques, permettant d’améliorer les interactions électromagnétiques entre le rayonnement lumineux et un objet sub-longueur d’onde. Ces dispositifs innovants, fonctionnant dans une gamme de longueur d’onde correspondant au spectre visible et proche infrarouge, répondent à certaines contraintes inhérentes à l’optique lorsque les échelles d’interactions relèvent du nanomètre. En particulier, les propriétés des antennes optiques métalliques sont régies par l’apparition de résonances plasmons qui permettent, d’une part de confiner le champ électromagnétique dans des volumes très inférieurs aux limites imposées par la diffraction, et d’autre part d’exalter fortement les processus optiques à faibles sections efficaces. L’objectif de cette thèse est de comprendre par l’expérience quels sont les paramètres clés qui caractérisent une nano-antenne optique afin d’en contrôler son fonctionnement. Ces paramètres ont été accessibles expérimentalement grâce au développement d’une microscopie adaptée basée sur une illumination diascopique à faible ouverture numérique avec soit une détection coronographique confocale ou conoscopique. Cet appareillage nous a permis de mesurer la capacité d’une antenne optique unique à diffuser un rayonnement lumineux. Les études ont débutées avec des systèmes modèles simples (nanoparticules) pour évoluer vers des antennes couplées (dimères). Par analogie avec le domaine radiofréquences, les paramètres importants d’une antenne optique que sont la plage fréquentielle, le désaccord, le gain et le diagramme de rayonnement ont été définis et mesurés. L’influence des caractéristiques morphologiques de l’antenne sur ces paramètres a complété l’étude. Toujours par comparaison avec les antennes radiofréquences, nous avons introduit le concept de tuner optique. Le principe est de modifier la réponse optique de la charge de l’antenne, c’est-à-dire le milieu dans lequel elle émet son rayonnement. Dans ce but, nous avons utilisé un milieu anisotrope composé des molécules de cristal liquide dont l’orientation de l’ellipsoïde des indices peut être commandée par un champ électrostatique. Le fonctionnement du tuner, c’est-à-dire l’accord de l’antenne à une fréquence de travail, a été démontré pour des antennes optiques couplées. / Optical nanoantennas are a new class of optical devices, generally constituted of metal nanoparticles, used for enhancing the interaction between an electromagnetic wave and a nano-scale object. These components are operating in the visible to near infra-red part of the spectrum and are offering solutions for the inherent limitations of optics at the nanometer scale. In particular, the properties of optical antennas are governed by the surface plasmon resonances of the underlying structure. These resonances are associated with a large field confinement, beyond the diffraction limit, and an enhancement of the local electromagnetic response that is used to amplify weak optical processes. The objective of this doctoral thesis is to understand by an experimental approach what are the key parameters characterizing an optical antenna with the aim to control its operation. Through the development of an original microscopy based on a low numerical aperture diascopic illumination and a subsequent spatial filtering, the scattering characteristics of a single optical nano-antenna were successfully measured. Our approach was first tested with simple model antennas (nanoparticles) before investigating multi-element coupled antennas (dimers). In analogy to radiofrequency theory, we have defined and measured important antenna characteristics: operating frequency, detuning factor, gain and emission diagram. We have studied the influence of the morphology of the antenna on these characteristics. Continuing the comparison with microwave antennas, we have introduced the concept of an optical tuner. The operating principle is to modify the medium in which the antenna is emitting its radiation i.e. the load of the device. To this aim, we have employed anisotropic liquid crystal molecules. With this load medium, the orientation of the anisotropy can be controlled by a static electric field. The operation of the optical tuner, i.e. tuning of the antenna to a broadcasting frequency, is demonstrated for electromagnetically coupled antennas.
3

Contrôle de nano-antennes optiques par une commande électrique : tuner plasmonique et transduction

Berthelot, Johann 11 October 2011 (has links)
Les nano-antennes optiques constituent un élément clé pour le contrôle et l’intéraction lumière/matière à l’échelle nanométrique. Ces systèmes opèrent dans le domaine de l’optique visible et proche infrarouge. Les propriétés de ces composants sont contrôlées en modifiant la taille, la forme et le matériau utilisé. Ces paramètres sont ajustés par les processus de fabrication de l’antenne. Dans le domaine des radio-fréquences, le tuner permet d’ajuster la fréquence de résonance de l’antenne de façon dynamique. Nous avons dans le cadre de cette thèse voulu adapter ce concept de tuner au domaine de l’optique. Le principe employé consiste à changer la résistance de charge de l’antenne, c’est-à-dire l’indice du milieu électrique environnant. Pour cela, nous avons utilisé un matériau anisotrope constitué de molécules de cristaux liquides. L’indice optique est alors modifié par l ’application d’un champ électrique statique. Le changement des propriétés spectrales ainsi que de diffusion d’une antenne de type dimère sont ici démontrées.Toujours en analogie avec les antennes radio-fréquences, nous avons étudié la propriété de transduction électron-photon dans le cas des antennes optiques. Dans ce but, nous avons considéré deux configurations. La première concerne l’utilisation de nanotubes de carbone placés dans une configuration de transistor à effet de champ. Ces objets émettent de la lumière par une recombinaison de paires électrons-trous dans le domaine des longueurs d’ondes Télécom. La seconde configuration emploie des jonctions tunnels fabriquées par électro-migration. Dans ce cas là, la jonction est assimilée à une antenne à interstice. A cause des faibles dimensions des jonctions (autour de 1 nm), nous nous sommes intéressés à la réponse en optique non linéaire de ses objets. Cette technique permet de localiser la jonction tunnel grâce à une forte exaltation du signal. L’etude des différentes caractérisques de ses jonctions sont ici présentées. Une fois la transduction du signal réalisée par l’antenne radiofréquence, celui-ci est acheminé via une ligne de transmission. A l’ échelle nanométrique, les guides plasmoniques s’avèrent être un type de structure approprié. Dans ce cas, les guides peuvent à la fois servir d’´electrode mais aussi de guide. Dans le cadre de cette thèse, nous avons étudié par microscopie à fuites radiatives, dans l’espace direct et réciproque, la plus simple des géométries : le guide ruban métallique. Nous avons cherché à comprendre, pourquoi ce type de structure présente une largeur de coupure. / Optical nano-antennae are the new class of components to control light/matterinteraction at the nanoscale. These devices are operating in the visible to near infraredpart of the spectrum. The properties of these nano objects are controlled by theform, the size and the material.In the radio frequency domain, the tuner changes dynamically the operatingwavelength of the antenna. In this thesis work, we search to transfer this conceptto the nanoscale. The principle is to change the load impedance of the antenna, i.e.changing the optical index of the dielectric medium around the nano-object. Forthat we used anisotropic liquid cristal molecules. The value of the optical index iscontrolled by applying an external electrical static field. The effects on the spectraland scattering properties are demonstrated on a single dimer nano-antenna.However with the microwave antennae, we were interesting to the electronsphotonstransduction with an optical antenna. In this mind, we studied two differentsconfigurations. The first one concerns the use of carbon nanotubes placedin a field effect transistor configuration. These nano-objects emit light in the Telecomwavelength range by a radiative combination of electrons and holes. the secondconfiguration used planar tunnel junctions made by electromigration. In this case,the junctions are view as an optical gap antenna. Because the gap are very small(around 1 nm), we have studied the nonlinear optical response of these objects. Thisnonlinear optical characterization allows to determined the location of the tunneljunctions by an enhancement of the optical signal. The results about the properties(electrical and optical) of these tunnel junctions are presented.Once the transduction by the radio frequency antenna is achieved, this signalis transporting by a transmission line. By transposition at the nanoscale, the plasmonicswaveguides prove to be the most appropriate structure. In this case, theycould be used as an electrode or a waveguide. In this thesis work, we have studiedby leakage radiation microscopy, in the direct and reciprocal space, the simplestgeometry : plasmonic metal strips. We search to understand why these structureshave a cut-off width.

Page generated in 0.0717 seconds