Spelling suggestions: "subject:"tunnelkontakt"" "subject:"tunnelkontakte""
1 |
Growth and characterization of thin Al2O3 and Ga2O3 films on single-crystalline Ni, Co, and CoGa substratesWehner, Arno. January 2004 (has links)
Düsseldorf, Univ., Diss., 2004. / Computerdatei im Fernzugriff.
|
2 |
Growth and characterization of thin Al2O3 and Ga2O3 films on single-crystalline Ni, Co, and CoGa substratesWehner, Arno. January 2004 (has links)
Düsseldorf, University, Diss., 2004.
|
3 |
Quantum transport in nanostructures from computational concepts to spintronics in graphene and magnetic tunnel junctionsWimmer, Michael January 2008 (has links)
Zugl.: Regensburg, Univ., Diss., 2008
|
4 |
Quantum transport in nanostructures : from computational concepts to spintronics in graphene and magnetic tunnel junctions /Wimmer, Michael. January 2009 (has links)
Zugl.: Regensburg, University, Diss., 2008.
|
5 |
Präparation und Charakterisierung von Anordnungen aus ultrakleinen metallischen Tunnelelementen und Erprobung supraleitender QubitsBorn, Detlef. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Jena.
|
6 |
Herstellung und Untersuchung metallischer Einzel-Elektronen-TransistorenHofmann, Karl. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2001--Aachen.
|
7 |
Photostromspektroskopie an Nanokontakten : Tunnel- und Einzelmolekülkontakte unter Femtosekundenbeleuchtung / Photocurrent spectroscopy on nanocontacts : tunnel and single molecule junctions under femtosecond illuminationDantscher, Sandra January 2006 (has links) (PDF)
In dieser Arbeit wurde der lichtinduzierte Ladungstransfer in Nanokontakten untersucht. Dabei wurden sowohl Tunnel- als auch Molekülkontakte eingesetzt. Zur Präparation der Tunnelkontakte standen zwei verschiedene Methoden zur Verfügung: mechanisch kontrollierte Bruchkontakte und elektromigrierte Nanokontakte. Die Bruchkontakttechnik bietet die Möglichkeit, den Abstand der Elektroden mit Sub-AA-Genauigkeit zu verändern, während die elektromigrierten Kontakte einen durch die Präparationsbedingungen fest vorgegebenen Abstand haben. Bei den hier untersuchten Molekülen handelt es sich um Dithiole, die über eine Schwefel-Gold-Bindung an die Elektroden gebunden sind. Die Beleuchtung erfolgte im Fall der Bruchkontakte mit ultrakurzen Laserpulsen bei 800 nm und durch Frequenzverdopplung bei 400 nm. Durch Fokussierung auf einen Radius von ca. 100 mum wurden Spitzenintensitäten von 10^7 Wcm^-2 (800 nm) bzw. 10^6 Wcm^-2 (400 nm) erreicht. Die Bruchkontakte (Tunnel- und Molekülkontakte) waren bis zu den auftretenden Maximalintensitäten von 10^7 Wcm^-2 stabil. Für alle untersuchten Tunnelkontakte konnte eine lichtinduzierte Stromkomponente von bis zu 1 nA nachgewiesen werden. Sie ist proportional zum jeweils fließenden mittleren DC-Strom und beträgt typischerweise einige Prozent davon. Dieser Strom wurde auf die thermische Ausdehnung der Elektroden auf Grund der dort durch Absorption deponierten Lichtenergie zurückgeführt. Aus der relativen Größe des lichtinduzierten Signals und einem Wert der Austrittsarbeit von Gold von ca. 4,7 eV ergibt sich eine Expansion jeder Elektrode um etwa 1 pm. Dies ist in guter Überinstimmung mit einem einfachen thermischen Modell der freitragenden Elektroden. Bei einigen Kontakten wurde noch eine weitere lichtinduzierte Stromkomponente in der Größenordnung einiger pA gefunden, die nicht von der angelegten Biasspannung abhängt, aber linear mit der Laserleistung zunimmt. Ein Modell, das diese Befunde erklärt, geht von einer asymmetrischen Anregung in den beiden Elektroden aus. Somit ergibt sich ein Nettostrom angeregter Elektronen in eine Richtung. Die dazugehörige gemessene Quanteneffizienz liegt nahe bei 1, was ein Indiz auf einen Beitrag von sekundären heißen Elektronen zum Strom ist. Auch bei den Molekülkontakten konnte eine lichtinduzierte Stromkomponente identifiziert werden, die linear von der Laserintensität abhängt. Sie wird, ähnlich wie im Fall der Tunnelkontakte, der thermisch verursachten Expansion der Elektroden zugeschrieben, allerdings ließ sich der genaue Prozess bisher noch nicht erklären. Es ist anzunehmen, dass die Zunahme der Elektrodenlänge durch eine Umordnung auf atomarer Längenskala in der vordersten Spitze der Goldelektrode kompensiert wird, da dies der duktilste Bereich des gesamten Kontakts ist. Der genaue Prozess konnte jedoch noch nicht geklärt werden. Messungen, die den Elektrodenabstand um einige AA veränderten, lieferten weitere Indizien für die Komplexität der Molekülkontakte. So trat in manchen Fällen eine starke Korrelation zwischen Veränderungen des mittleren DC-Stroms und des lichtinduzierten Signals auf, was auf einen einzelnen Transportpfad für beide Signale hindeutet. Andererseits veränderten sich die beiden Ströme teilweise aber auch unabhängig voneinander, was nur durch mehrere parallele Transportkanäle im Kontakt erklärt werden kann. Zusätzlich zum thermisch verursachten lichtinduzierten Signal wurden, wie im Fall der Tunnelkontakte, biasspannungsunabhängige Ströme identifiziert. Sie sind in der gleichen Größenordnung wie in Tunnelkontakten und werden somit der gleichen Ursache zugeschrieben, nämlich einer asymmetrischen Anregung in den Metallelektroden, die zu einem Nettostrom in einer Richtung führt. Im zweiten Teil der Arbeit wurden elektromigrierte Tunnelkontakte untersucht. Da diese Kontakte einen sehr großen Elektrodenabstand in der Größenordnung von 30 nm aufwiesen, konnte nur bei Kombination von einer Biasspannung von mehreren Volt mit Femtosekundenbeleuchtung ein Strom im Bereich von 100 fA detektiert werden. Durch Verbesserung der Fokussierung im Vergleich zu den Experimenten an den Bruchkontakten wurden Spitzenintensitäten von 10^11 Wcm^-2 erreicht. Die lichtinduzierten Tunnelströme zeigen eine quadratische Intensitätsabhängigkeit, was einem Zwei-Photonen-Prozess entspricht, sowie eine ebenfalls nichtlineare Spannungsabhängigkeit. Zur Beschreibung der Daten wurde das Modell einer Multiphotonen-Photofeldemission verwendet, das auf der Fowler-Nordheim-Formel für Feldemission basiert. Durch geeignete Wahl der Modellparameter (Elektrodenabstand, Krümmungsradius der Elektrodenspitze und Barrierenhöhe im Tunnelkontakt) war es möglich, die Spannungsabhängigkeit des lichtinduzierten Signals zu reproduzieren. / The goal of the present work was the investigation of light induced charge transfer in nano contacts. In this context, tunnel and molecular contacts were employed. Tunnel contacts were prepared by two different methods: the mechanically controlled break-junction technique (MCBJ) and the electromigration of nano junctions. The MCBJs make it possible to vary the distance of the electrodes with sub-AA precision while the gap width of the electromigrated contacts has a fixed value which is determined by the preparation conditions. All molecules under investigation are dithiols that bind to the metallic electrode by a strong gold-sulfur bonding. In the experiments with the MCBJs the contacts were illuminated with ultrashort laser pulses at 800 nm and its second harmonic at 400 nm. Focussing on a spot radius of approximately 100 mum resulted in peak intensities of 10^7 Wcm^-2 for 800 nm and 10^6 Wcm^-2 for 400 nm. The MCBJs (tunnel and molecular junctions) were stable up to the maximum intensities of 10^7 Wcm^-2. For all investigated tunnel junctions a light induced current of up to 1 nA could be detected. This current is proportional to the respective average DC current through the junction (caused by an applied bias voltage) and typically amounts to some percent of it. The light induced current component was attributed to a thermal expansion of the electrodes due to photon absorption. From its relative magnitude and the work function of gold of 4.7 eV an expansion of each electrode of about 1 pm could be deduced. This is in good agreement with a simple thermal model for the freestanding electrodes. For some contacts an additional light induced current component in the range of some pA was identified. It is independent of the applied bias, but increases linearily with the laser power. A model that accounts for these findings is based on an asymmetric excitation in the two electrodes. Thus, a net current of excited electrons in one particular direction is generated. The corresponding measured quantum efficiency is approximately 1 indicating a significant contribution of secondary hot charge carriers to the current. Also, for the molecular contacts a light induced current component could be identified that depends linearily on the laser intensity. Like in the case of the tunnel contacts it is accounted for by the thermal expansion of the electrodes. However, it has not yet been possible to explain the precise mechanism. The increase of the electrode length is presumably compensated by a rearrangement on the atomic scale in the foremost part of the tip since this is the most ductile region of the whole contact. A detailed explanation however is still missing. Measurements where the electrode separation is varied by some AA provide further evidence for the complexity of the molecular junctions. In some cases a strong correlation between changes in the average DC current and the light induced signal could be observed. This suggests a single transport path for the two signals. On the other hand the signals sometimes changed independently of each other. This can only be explained by several parallel transport channels in the contact. In addition to the thermally caused light induced signal also a bias independent current could be identified, like in the case of tunnel junctions. These currents are in the same order of magnitude as in tunnel contacts and are therefore attributed to the same origin, i.e. an asymmetric excitation in the metal electrodes that causes a net current in one direction. For bias voltages up to +/- 1 V this current contribution is constant and in particular doesn't exhibit any spectral features. In the second part of the present work electromigrated tunnel contacts were investigated. These junctions exhibited a very large electrode separation of around 30 nm. Therefore, only the combination of a bias voltage of some volts and illumination with femtosecond laser pulses yielded a detectable current in the range of 100 fA. By improving the focussing with respect to the MCBJ experiments peak intensities up to 10^11 Wcm^-2 were reached. The light induced tunnel currents exhibit a quadratic intensity dependence that corresponds to a two-photon process. Moreover, the bias dependence is non-linear as well. For the description of the data a model of a multi-photon photo-field emission was used that is based on the Fowler-Nordheim equation of field emission. By a suitable choice of the model parameters (electrode separation, radius of curvature of the electrode tips and barrier height in the tunnel junction) it was possible to reproduce the bias dependence of the light-induced signal.
|
8 |
Behavior of single charge devices included in different electrical circuits /Zangerle, Hermann. January 2007 (has links)
University, Diss.--Erlangen-Nürnberg, 2006.
|
9 |
Photostromspektroskopie an Nanokontakten Tunnel- und Einzelmolekülkontakte unter Femtosekundenbeleuchtung /Dantscher, Sandra. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2006--Würzburg.
|
10 |
Einfluss von Gate-Tunnelströmen auf Switched-Capacitor-SchaltungenKraus, Werner January 2008 (has links)
Zugl.: München, Techn. Univ., Diss., 2008
|
Page generated in 0.0349 seconds