• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Economic Dispatch of the Combined Cycle Power Plant Using Machine Learning

Bhatt, Dhruv January 2019 (has links)
Combined Cycle Power Plant (CCPP)s play a key role in modern powersystem due to their lesser investment cost, lower project executiontime, and higher operational flexibility compared to other conventionalgenerating assets. The nature of generation system is changing withever increasing penetration of the renewable energy resources. Whatwas once a clearly defined generation, transmission, and distributionflow is shifting towards fluctuating distribution generation. Because ofvariation in energy production from the renewable energy resources,CCPP are increasingly required to vary their load levels to keep balancebetween supply and demand within the system. CCPP are facingmore number of start cycles. This induces more stress on the gas turbineand as a result, maintenance intervals are affected.The aim of this master thesis project is to develop a dispatch algorithmfor the short-term operation planning for a combined cyclepower plant which also includes the long-term constraints. The longtermconstraints govern the maintenance interval of the gas turbines.These long-term constraints are defined over number of EquivalentOperating Hours (EOH) and Equivalent Operating Cycles (EOC) forthe Gas Turbine (GT) under consideration. CCPP is operating in theopen electricity market. It consists of two SGT-800 GT and one SST-600 Steam Turbine (ST). The primary goal of this thesis is to maximizethe overall profit of CCPP under consideration. The secondary goal ofthis thesis it to develop the meta models to estimate consumed EOHand EOC during the planning period.Siemens Industrial Turbo-machinery AB (SIT AB) has installed sensorsthat collects the data from the GT. Machine learning techniqueshave been applied to sensor data from the plant to construct Input-Output (I/O) curves to estimate heat input and exhaust heat. Resultsshow potential saving in the fuel consumption for the limit on CumulativeEquivalent Operating Hours (CEOH) and Cumulative EquivalentOperating Cycles (CEOC) for the planning period. However, italso highlighted some crucial areas of improvement before this economicdispatch algorithm can be commercialized. / Kombicykelkraftverk spelar en nyckelroll i det moderna elsystemet pågrund av den låga investeringskostnaden, den korta tiden för att byggaett nytta kraftverk och hög flexibilitet jämfört med andra kraftverk.Elproduktionssystemen förändras i takt med en allt större andel förnybarelproduktion. Det som en gång var ett tydligt definierat flödefrån produktion via transmission till distribution ändrar nu karaktärtill fluktuerande, distribuerad generering. På grund av variationernai elproduktion från förnybara energikällor finns ett ökat behov avatt kombicykelkraftverk varierar sin elproduktion för att upprätthållabalansen mellan produktion och konsumtion i systemet. Kombicykelkraftverkbehöver startas och stoppas oftare. Detta medför mer stresspå gasturbinen och som ett resultat påverkas underhållsintervallerna.Syftet med detta examensarbete är att utveckla en algoritm för korttidsplaneringav ett kombicykelkraftverk där även driften på lång siktbeaktas. Begränsningarna på lång sikt utgår från underhållsintervallenför gasturbinerna. Dessa långsiktiga begränsningar definieras som antaletekvivalenta drifttimmar och ekvivalenta driftcykler för det aktuellakraftverket. Kombikraftverket drivs på den öppna elmarknaden.Det består av två SGT-800 GT och en SST-600 ångturbin. Det främstamålet med examensarbetet är att maximera den totala vinsten förkraftverket. Ett sekundärt mål är att utveckla metamodeller för attskatta använda ekvivalenta drifttimmar och ekvivalenta driftcyklerunder planeringsperioden.Siemens Industrial Turbo-machinery AB (SIT AB) har installeratsensorer som samlar in data från gasturbinerna. Maskininlärningsteknikerhar tillämpats på sensordata för att konstruera kurvor för attuppskatta värmetillförseln och avgasvärme. Resultaten visar en potentiellbesparing i bränsleförbrukningen om de sammanlagda ekvivalentadrifttimmarna och de sammanlagda ekvivalenta driftcyklernabegränsas under planeringsperioden. Det framhålls dock också att detfinns viktiga förbättringar som behövs innan korttidsplaneringsalgoritmenkan kommersialiseras.

Page generated in 0.0962 seconds