Spelling suggestions: "subject:"turbines -- design"" "subject:"turbines -- 1design""
11 |
Computer aided design of small axial flow hydraulic turbinesSanchez, Gines A. January 1983 (has links)
M.S.
|
12 |
Design methodology of an axial-flow turbine for a micro jet engineBasson, Johan George Theron 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The main components of a micro gas turbine engine are a centrifugal or mixed-flow compressor, a combustion chamber and a single stage axial-flow or radial-flow turbine. The goal of this thesis is to formulate a design methodology for small axial-flow turbines. This goal is pursued by developing five design-related capabilities and applying them to develop a turbine for an existing micro gas turbine engine. Firstly, a reverse engineering procedure for producing digital three-dimensional models of existing turbines is developed. Secondly, a procedure for generating candidate turbine designs from performance requirement information is presented. The third capability is to use independent analysis procedures to analyse the performance of a turbine design. The fourth capability is to perform structural analysis to investigate the behavior of a turbine design under static and dynamic loading. Lastly, a manufacturing process for prototypes of a feasible turbine design is developed. The reverse engineering procedure employs point cloud data from a coordinate measuring machine and a CT-scanner to generate a three-dimensional model of the turbine in an existing micro gas turbine engine. The design generation capability is used to design three new turbines to match the performance of the turbine in the existing micro gas turbine engine. Independent empirical and numerical turbine performance analysis procedures are developed. They are applied to the four turbine designs and, for the new turbine designs, the predicted efficiency values differ by less than 5% between the two procedures. A finite element analysis is used to show that the stresses in the roots of the turbine rotor blades are sufficiently low and that the dominant excitation frequencies do not approach any of the blade natural frequencies. Finally prototypes of the three new turbine designs are manufactured through an investment casting process. Patterns made of an organic wax-like material and a polystyrene material are used, with the former yielding superior results. / AFRIKAANSE OPSOMMING: Mikro-gasturbiene-enjins bestaan uit 'n sentrifugaal- of ‘n gemende-vloeikompressor, 'n verbrandingsruim en 'n enkel-stadium-aksiaalvloei- of ‘n radiaalvloei-turbine. Die doel van hierdie tesis is om 'n ontwerpsmetodologie vir klein aksiaalvloei-turbines saam te stel. Hierdie doel word deur die ontwikkeling en toepassing van vyf ontwerpsverwante vermoëns nagestreef. Eerstens word 'n tru-waartse-ingenieursproses ontwikkel om drie-dimensionele rekenaarmodelle van die bestaande turbines te skep. Tweedens word 'n metode om kandidaatturbineontwerpe vanaf werkverrigtingsvereistes te verkry, voorgestel. Die derde ontwerpsvermoë is om die werksverrigting van 'n turbineontwerp met onafhanklike analises te evalueer. Die vierde ontwerpsvermoë is om die struktuur van 'n turbinelem te analiseer sodat die effek van statiese en dinamiese belastings ondersoek kan word. Laastens word 'n vervaardigingsproses vir prototipes van geskikte turbineontwerpe ontwikkel. Die tru-waartse-ingenieursproses maak gebruik van 'n koördinaat-meet-masjien en 'n CT-skandeerder om puntewolkdata vanaf die turbine in 'n bestaande mikro-gasturbiene-enjin te verkry. Die data word dan gebruik om 'n drie-dimensionele model van die turbine te skep. Die ontwerpskeppingsvermoë word dan gebruik om drie kandidaatturbineontwerpe vir die bestaande mikro-gasturbiene-enjin te skep. Onafhanklike empiriese en numeriese prosedures om die werkverrigting van 'n turbineontwerp te analiseer word ontwikkel. Beide prosedures word op die vier turbineontwerpe toegepas. Daar word gevind dat die voorspelde benuttingsgraadwaardes van die nuwe ontwerpe met minder as 5% verskil vir die twee prosedures. 'n Eindige-element-analise word dan gebruik om te wys dat die spannings in die wortels van die turbinelemme laag genoeg is, asook dat die dominante opwekkingsfrekwensies nie die lem se natuurlike frekwensies nader nie. Laastens word prototipes van die drie nuwe turbineontwerpe deur 'n beleggingsgietproses vervaardig. In die vervaardigingproses word die effektiwiteit van twee materiale vir die gietpatrone getoets, naamlik 'n organiese wasagtige materiaal en 'n polistireen-materiaal. Daar word bevind dat die gebruik van die wasagtige gietpatrone tot beter resultate lei.
|
13 |
A Study on the Design and Material Costs of Tall Wind Turbine Towers in South AfricaWay, Andrew Christopher 12 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The aim of this project is to study the structural design and costing of various designs of tall
wind turbine towers and the associated foundations in a South African context. Speci c design
guidelines are proposed for the design of tubular steel, concrete and concrete-steel hybrid towers
and foundations for hub heights of 80, 100 and 120m. Additionally, a conclusion will be made
as to whether the concrete and hybrid towers are a viable alternative to steel towers at higher
hub heights.
To accomplish this, three of each type of tower (steel concrete and hybrid) and their foundations
were designed according to the relevant design standards. The designs were then veri ed using
the Abaqus nite element software. The costs of the designs for a South African environment
were subsequently calculated according to the increases in material cost, as a function of the
increase in hub height.
It was found that for the chosen design assumptions, the foundations for the concrete and hybrid
towers are less material intensive, and therefore cheaper, than the steel towers. The material
costs of the concrete and hybrid towers were also shown to be lower than the material costs of
the steel towers, especially at hub heights of 100 to 120m. For the circumstances in this project,
it was found that an increase in hub height causes an increase in energy generation of 3.52 and
6.28 percent for 80m to 100m and 80m to 120m hub heights, respectively. It is therefore deduced
that, given the trends in the design and cost associated with increasing hub heights, the concrete
and hybrid towers become viable alternatives to the conventional steel towers at hub heights of
100 to 120m in height. / AFRIKAANSE OPSOMMING: Die doel van hierdie projek is om die strukturele ontwerp en koste van verskillende soorte ho e
wind turbines en die toepaslike fondamente vir 'n Suid-Afrikaanse konteks te bestudeer. Spesi
eke riglyne word voorgestel vir die ontwerp van silindervormige staal, beton en beton-staal
hibriede torings en fondamente vir naafhoogte van 80, 100 en 120m. 'n Gevolgtrekking oor die
lewensvatbaarheid van die beton en hibriede torings, in vergelyking met die gewone staal torings
teen naafhoogte van 100 tot 120m sal ook gemaak word.
Met die bogenoemde as doel, is drie van elke tipe toring (staal, beton en hibried) en hul fondamente
volgens die toepaslike standaarde ontwerp. Daarna is die integriteit van die ontwerpe
getoets en bevestig deur gebruik van die Abaqus eindige-element-metode sagteware. Ten slotte,
die kostes van die ontwerpe vir 'n Suid Afrikaanse omgewing is bereken en die verandering in
materiaalkoste uitgedruk as 'n funksie van die verhoging in naafhoogte.
Daar is gevind dat, vir die aannames in die ontwerp, die fondamente van die beton en hybrid
torings minder materiaal benodig, en dus goedkoper is as die staal torings. Verder, is die
materiaalkoste van die beton en hibriede torings laer as die van die staal torings, veral vir
naafhoogtes van 100 tot 120m. Verder, is daar vir die omstandighede in hierdie projek gevind
dat ho er naafhoogtes stygings in energie-opwekking van 3.52 persent vir naafhoogte stygings
van 80m tot 100m, en stygings van 6.28 persent vir naafhoogte stygings van 80m tot 120m
lewer. Daar word dus tot die gevolgtrekking gekom dat, gegewe die tendense in die ontwerp en
materiaal koste wat verband hou met die verhoging van die naafhoogte, die beton en hibriede
torings 'n lewensvatbare alternatief vir die konvensionele staal torings vir naafhoogtes van 100
tot 120m word.
|
14 |
Concrete wind turbine towers in Southern AfricaVan Zyl, Willem Sternberg 12 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Exponential growth of the global wind turbine market has led to a significant increase in the capacity of wind turbine generators. Modern turbines require higher support structures as higher wind speeds combined with longer blades are necessary to increase their generating capacity. The standard 80-90 m tower is thus not economically viable anymore. Transportation logistics of large steel towers has led to concrete towers becoming a viable option. There are currently no design codes dealing exclusively with the design of concrete wind turbine towers. The aim of this project is to investigate and highlight important aspects of the design process of a normally reinforced high strength concrete wind turbine tower. The tower was designed using nonlinear finite element modelling as a design tool to accurately design the tower for various loads and load cases. An analytical design method was developed that can be used in the preliminary design stage. Finally, the importance of the soil-structure interaction was investigated through a sensitivity analysis.
It was found that the formation of cracks greatly affected the stiffness of the structure and that the reduction in stiffness increased the deflection significantly. It was also found that a structure that has sufficient strength to resist the ULS loads may not necessarily comply with the maximum deflection limit for the SLS. The concrete strength class required was not only determined by the maximum compression stress the concrete would experience, but also by the stiffness required to ensure that the tower frequency is within the turbine’s working frequency. The dynamic behaviour of the tower was also affected by the formation of cracks. The fundamental frequency of the tower was reduced by 46% after the SLS loads were applied. It was found that the soil preparation for the foundation plays a vital role in ensuring that the tower frequency is not reduced to a level where it falls outside the turbine working frequency. / AFRIKAANSE OPSOMMING: Die eksponensiële groei van die globale wind turbine mark het gelei tot ʼn beduidende toename in die opwekkingskapasiteit van wind turbine kragopwekkers. Moderne turbines benodig hoër ondersteuningstrukture om hulle opwekkingskapasiteit te verhoog en daarom is die standaard 80-90 m toring nie meer geskik nie. Die vervoer logistiek van groot staal torings het daartoe gelei dat beton torings ʼn lewensvatbare opsie geword het. Daar is huidiglik geen ontwerpkodes wat uitsluitlik handel met die ontwerp van beton wind turbine torings nie. Die doel van hierdie projek is om die ontwerp proses van ʼn bewapende hoë sterkte beton wind turbine toring te ondersoek en belangrike aspekte uit te lig. Die toring word ontwerp deur ʼn nie-liniêre eindige element model te gebruik as ʼn ontwerp hulpmiddel, om die toring akkuraat te ontwerp vir verskeie laste en lasgevalle. ʼn Analitiese ontwerpmetode is ontwikkel wat gebruik kan word in die voorlopige ontwerpfase. Laastens is die grond-struktuur interaksie ondersoek deur ʼn sensitiwiteitsanalise.
Daar is gevind dat die vorming van krake die styfheid van die struktuur aansienlik beïnvloed en dat die vermindering in styfheid die defleksie beduidend vermeerder. Daar is ook gevind dat ʼn struktuur wat voldoende sterkte het om die uiterste lastoestande te weerstaan, nie noodwendig voldoen aan die maksimum defleksiegrens vir die diens lastoestande nie. Die beton sterkte klas wat benodig is, is nie net bepaal deur die maksimum druk spanning wat die beton sal ondervind nie, maar ook deur die styfheid wat vereis word om te verseker dat die toring se frekwensie binne die turbine se werksfrekwensie val. Die dinamiese gedrag van die toring is ook beïnvloed deur die vorming van krake. Die fundamentele frekwensie van die toring is verlaag met 46% nadat die diens lastoestande toegepas is. Daar is gevind dat die grond voorbereiding vir die fondasie ʼn belangrike rol speel om te verseker dat die toring se frekwensie nie verlaag word tot ʼn vlak waar dit buite die turbine se werksfrekwensie val nie.
|
15 |
Optimization of an Ocean Current Turbine Design and Prediction of Wake Propagation in an ArrayUnknown Date (has links)
This research focused on maximizing the power generated by an array of ocean
current turbines. To achieve this objective, the produced shaft power of an ocean current
turbine (OCT) has been quantified using CFD without adding a duct, as well as over a
range of duct geometries. For an upstream duct, having a diameter 1.6 times the rotor
diameter, the power increased by 8.35% for a duct that extends 1 diameter upstream.
This research also focused on turbine array optimization, providing a
mathematical basis for calculating the water velocity within an array of OCTs. After
developing this wake model, it was validated using experimental data. As the
downstream distance behind the turbine increases, the analytic results become closer to
the experimental results, with a difference of 3% for TI = 3% and difference of 4% for TI
= 15%, both at a downstream distance of 4 rotor diameters. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
|
16 |
Experimental analysis of the effect of waves on a floating wind turbineUnknown Date (has links)
The goal of this Thesis is to demonstrate, through experimentation, that
ocean waves have a positive effect on the performance of an offshore wind
turbine. A scale model wind turbine was placed into a wave tank that was
completely covered and fitted with a variable speed fan to create different wind
and wave conditions for testing. Through testing, different power coefficient vs.
tip speed ratio graphs were created and a change in power coefficient was
observed between steady operating conditions and operating conditions with
waves. The results show a promising increase in power production for offshore
wind turbines when allowed to operate with the induced motion caused by the
amplitude and frequency of water waves created. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2013.
|
17 |
Manufacture and evaluation of a five-kilowatt axial-flow water turbineHo, Lee Wing January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Lee Wing Ho. / M.S.
|
18 |
Characterizing Tilt Effects on Wind PlantsScott, Ryan 14 June 2019 (has links)
Tilting the nacelle of a wind turbine modifies entrainment into the wind plant and impacts total efficiency. Extreme angles can produce flying and crashing wakes where the wake either disrupts entertainment from the undisturbed flow above or is decimated on the ground. The effect of tilt angle on downstream wake behavior was investigated in a series of wind tunnel experiments. Scale model turbines with a hub height and diameter of 12 cm were arranged in a Cartesian array comprised of four rows of three turbines each. Nacelle tilt was varied in the third row from -15° to 15° in chosen 5° increments. Stereo PIV measurements of the instantaneous velocity field were recorded at four locations for each angle. Tilted wakes are described in terms of the average streamwise velocity field, wall-normal velocity field, Reynolds stresses, and mean vertical transport of kinetic energy. Conditional sampling is used to quantify the importance of sweep vs. ejection events and thus downwards vs. upwards momentum transfer. Additionally, wake center displacement and changes in net power are presented and compared to existing models. The results demonstrate large variations in wake velocity and vertical displacement with enhanced vertical energy and momentum transfer for negative tilt angles. Simulation models accurately predict wake deflection while analytic models deviate considerably highlighting the difficulties in describing tilt phenomena. Negative angles successfully produce crashing wakes and improve the availability of kinetic energy thereby improving the power output of the wind plant.
|
19 |
Preliminary Turboshaft Engine Design Methodology for Rotorcraft ApplicationsSuhr, Stephen Andrew 20 November 2006 (has links)
In the development of modern rotorcraft vehicles, many unique challenges emerge due to the highly coupled nature of individual rotorcraft design disciplines therefore, the use of an integrated product and process development (IPPD) methodology is necessary to drive the design solution. Through the use of parallel design and analysis, this approach achieves the design synthesis of numerous product and process requirements that is essential in ultimately satisfying the customers demands. Over the past twenty years, Georgia Techs Center for Excellence in Rotorcraft Technology (CERT) has continuously focused on refining this IPPD approach within its rotorcraft design course by using the annual American Helicopter Society (AHS) Student Design Competition as the design requirement catalyst. Despite this extensive experience, however, the documentation of this preliminary rotorcraft design approach has become out of date or insufficient in addressing a modern IPPD methodology.
In no design discipline is this need for updated documentation more prevalent than in propulsion system design, specifically in the area of gas turbine technology. From an academic perspective, the vast majority of current propulsion system design resources are focused on fixed-wing applications with very limited reference to the use of turboshaft engines. Additionally, most rotorcraft design resources are centered on aerodynamic considerations and largely overlook propulsion system integration. This research effort is aimed at bridging this information gap by developing a preliminary turboshaft engine design methodology that is applicable to a wide range of potential rotorcraft propulsion system design problems. The preliminary engine design process begins by defining the design space through analysis of the initial performance and mission requirements dictated in a given request for proposal (RFP). Engine cycle selection is then completed using tools such as GasTurb and the NASA Engine Performance Program (NEPP) to conduct thorough parametric and engine performance analysis. Basic engine component design considerations are highlighted to facilitate configuration trade studies and to generate more detailed engine performance and geometric data. Throughout this approach, a comprehensive engine design case study is incorporated based on a two-place, turbine training helicopter known as the Georgia Tech Generic Helicopter (GTGH). This example serves as a consistent propulsion system design reference highlighting the level of integration and detail required for each step of the preliminary turboshaft engine design methodology.
|
20 |
Design of a robust speed and position sensorless decoupled P-Q controlled doubly-fed induction generator for variable-speed wind energy applicationsGogas, Kyriakos. January 2007 (has links)
Wind energy is a relatively young but rapidly expanding industry. In order for wind generation to be cost effective, it must produce energy at a minimum cost per dollar of investment. Performance characteristics such as power output versus wind speed must be optimized in order to compete with other energy sources. Also, if the utility uses wind power for a part of its generation, the output power of these turbines must have the same high quality and reliability when it enters the utility grid. The ability to vary operating speed is important in wind generation because it allows for an optimization of the transfer of power from the wind to the turbine shaft. Doubly-fed induction generators (DFIG) are an interesting solution for variable-speed systems with limited variable speed range, and are typically used in wind energy conversion systems. / The objectives of this thesis are to implement a decoupled P-Q control of a DFIG that does not rely on mechanical sensors and to design a speed and position sensorless algorithm that is robust to variations of the values of the machine parameters. The sensorless DFIG control algorithm presented in this thesis is based on a modified phasedlock loop with an improved positioning algorithm. With the measured stator voltages, stator and rotor currents, the speed and position of the DFIG are estimated. The speed is estimated independent of machine parameters, which results in a significant improvement in speed control robustness to parameter variations. In addition, the algorithm avoids using differentiation, which significantly improves its immunity to noise and does not require the measurement of the rotor voltages. Also, it is shown that the positioning algorithm has an improved operation in generator mode. Although the accuracy of the positioning algorithm is depended on machine parameters; it is shown with the designed controller that the P-Q decoupled control is robust to changes of machine parameters. Theoretical and simulation results are validated on an experimental setup.
|
Page generated in 0.0653 seconds