Spelling suggestions: "subject:"turbulence -- modèles mathématiques"" "subject:"turbulence -- urodèles mathématiques""
1 |
Adaptation de maillages et méthodes itératives avec applications aux écoulements à surfaces libres turbulentsWane, Bocar Amadou 18 April 2018 (has links)
Dans cette thèse, nous combinons des méthodes itératives basées sur l'élément fini P₂ hiérarchique et une stratégie d'adaptation de maillage anisotrope fondée sur l'intersection de métriques pour résoudre les écoulements turbulents avec ou sans surface libre. Les métriques sont obtenues en considérant la matrice hessienne des différentes composantes du gradient de chaque variable. Le modèle k-e , en formulation logarithmique, est utilisé pour modéliser la turbulence, et la surface libre est calculée par la méthode des surfaces de niveau («level sets»). Après avoir résolu quelques problèmes classiques qui mettent en évidence l'efficacité du solveur itératif et de la stratégie d'adaptation de maillage anisotrope, nous résolvons un problème d'écoulement tourbillonnaire entrant dans un diffuseur conique. Cette simulation a beaucoup d'intérêt pour les écoulements dans un aspirateur hydraulique. L'ensemble de notre approche est ensuite appliquée pour simuler un écoulement turbulent autour d'un cylindre perçant la surface libre. Finalement, les résultats positifs obtenus dans cette étude nous permettent d'aborder le phénomène d'aquaplanage en simulant l'écoulement turbulent à surface libre autour d'un pneu.
|
2 |
Modélisation algébrique explicite à pondération elliptique pour les écoulements turbulents en présence de paroiOceni, Abdou Gafari 01 July 2009 (has links) (PDF)
L'une des difficultés rencontrées dans les écoulements turbulents provient du fait que les statistiques dépendent très fortement de ce qui se passe à proximité des parois. La présence de ces derniers est pour la plupart du temps prise en compte par l'introduction de fonctions d'amortissement dans les équations des modèles. Cette approche particularise d'avantage les modèles et aussi ne favorise pas leur universalité. Le but de cette thèse est de développer des modèles Algébriques Explicites prenant en compte les effets de paroi par l'approche de la pondération elliptique développée par Manceau et Hanjalic, puis de procéder à la validation de ces modèles dans différentes configurations d'écoulements. La méthodologie de la modélisation algébrique explicite consiste à projeter l'équation du tenseur d'anisotropie sur une base convenablement choisie. La théorie des bases d'intégrité permet de déterminer le nombre de tenseurs devant constituer cette base afin d'éviter toute singularité dans les modèles. Dans cette circonstance de nombreux de modèles peuvent alors être développés. La prise en compte de la pondération elliptique à fait apparaître un tenseur supplémentaire M dans les équations en dehors des tenseurs S et W classiquement utilisés. Ce qui d'un côté rend plus complexe le cadre théorique, mais d'un autre côté offre de nombreuses possibilités de modèles approchés utilisables en pratique. Les modèles linéaire et non linéaire développés et testés pour une large gamme de Reynolds en canal, en écoulement de Couette-Poiseuille et en écoulement de couche limite sans cisaillement ont montrés leur capacité à reproduire convenablement l'anisotropie en proche paroi. La limite à deux composantes de la turbulence est préservée. L'extension de ces modèles en 3D a permis de montrer qu'il est possible de représenter correctement l'anisotropie dans un cas 3D en utilisant une base tronquée à trois tenseurs, à condition toutefois de prendre en compte l'intégralité des invariants apparaissant en 3D.
|
3 |
Modélisation des écoulements turbulents à surface libre par éléments finis de frontièreChang, Philippe 13 April 2018 (has links)
La recherche sur les écoulements à surface libre turbulents, et sur le cisaillement turbulent spécifiquement progresse depuis les années 1970. Les équations décrivant le mouvement d'agitation turbulente sont bien connues. Elles sont reliées directement aux équations non moyennées de continuité et de conservation de la quantité de mouvement qui forment le système d'équations de Navier-Stokes ainsi que les différentes équations de corrélations du mouvement turbulent. Pour un écoulement turbulent, ce système d'équations présente un problème de fermeture relié à la présence des termes associés aux contraintes de Reynolds. L'échelle du phénomène et plusieurs processus importants du mouvement turbulent ne peuvent ainsi être résolus de façon exacte, et un degré d'approximation devient donc nécessaire. La recherche sur le phénomène de la turbulence a permis de développer plusieurs concepts et approches reliés, notamment, à la viscosité turbulente, à l'isotropie locale de la turbulence et aux équations de transport des termes fluctuants afin de résoudre le problème de fermeture du système d'équations de Navier-Stokes. Ces approches présentent évidemment certaines limitations. De fait, la turbulence est fortement dépendante des conditions aux frontières par rapport à l'écoulement moyen et ne permet pas de prédétermination de la forme des distributions des vitesses moyennes de l'écoulement dans le cadre de la recherche d'une solution approximative. Ce travail de recherche présente un modèle hydrodynamique turbulent 2D vertical, en vue de résoudre une problématique d'écoulement à surface libre à partir de la méthode des éléments finis de frontière ainsi qu'une démarche en laboratoire, afin de caractériser les fluctuations de vitesses et de pression d'un écoulement turbulent à l'aide d'une méthode de vélocimétrie par imagerie de particules. Pour notre modèle numérique, notre approche procède à partir d'une formulation intégrale des équations moyennées de conservation de la quantité de mouvement et de continuité et l'équation associée des corrélations de vitesses turbulentes. En spécifiant les conditions aux limites pour les vitesses, la corrélation et les tractions à la frontière, le calcul du champ de vitesses peut être déterminé en termes des variables primaires à la frontière. Dans ces conditions, il n'est pas requis de discrétiser le domaine à l'aide d'un maillage ou de cellules ce qui pennet une utilisation plus efficiente des ressources et du temps de calcul. Des applications à des cas d'écoulements simples permettent de démontrer la validité du modèle bien que l'imposition des contraintes à la frontière peut être difficile à interpréter et que dans certains cas, l'intégration numérique pour des fonctions singulières peut être hasardeuse. À tenne, notre modèle prédit correctement les solutions analytiques de l'équation de Navier-Stokes pour un écoulement de Couette et ce, sans imposer de distribution à priori des variables primaires de l'écoulement sur le domaine, dans la recherche d'une solution numérique. Le système d'équations de Navier-Stokes, pour un écoulement turbulent, peut donc être envisagé à partir d'une formulation intégrale sur la frontière uniquement. Cette situation étant en accord et cohérente avec le comportement physique attendu du phénomène où les propriétés d'un écoulement turbulent sont directement reliées aux conditions aux limites et que l'action des contraintes fluctuantes est inter-reliée avec l'écoulement moyen. D'autre part, la démarche expérimentale à l'aide de vélocimétrie par imagerie de particules a permis une meilleure compréhension des spécificités des écoulements turbulents à surface libre, à Reynolds modéré. Notre analyse sur les conditions turbulentes à la frontière de l'écoulement tend à corroborer que les corrélations de vitesses turbulentes sont en équilibre avec le gradient de pression et bien que l'écoulement moyen puisse être stationnaire, il apparaît que les corrélations varient continuellement dans le temps selon une action dissipative, ce qui signifie que le gradient de pression est en constante évolution pour équilibrer le système. De plus, il apparaît que les conditions de pression moyenne dans un modèle, ne peuvent représenter adéquatement la réalité physique de l'action de la pression instantanée selon l'agitation turbulente. Enfin, remarquons que l'étude de la turbulence en laboratoire peut être entreprise de manière adéquate, aujourd'hui, avec des moyens limités malgré l'échelle du phénomène. Mots clés: équations de Navier-Stokes, écoulement turbulent, corrélations de vitesses, éléments finis de frontière, vélocimétrie par imagerie de particules.
|
4 |
Prédiction numérique de l'écoulement turbulent au sein d'une turbine bulbe par des simulations RANSGuénette, Vincent 19 April 2018 (has links)
Ce mémoire a comme objectif de prédire les performances d’une turbine modèle de type bulbe à l’aide de simulations numériques RANS k-ε. Tout d’abord, par des simulations numériques, on valide les éléments de la méthodologie les plus susceptibles d’influencer la qualité des résultats. Par la suite, on obtient la colline de rendement numérique et on analyse l’effet du jeu de bout d’aube ainsi que des jeux au moyeu sur la prédiction de performance. Les résultats indiquent que la colline de rendement numérique se compare bien à la littérature portant sur les turbines bulbes. On montre, de plus, que tenir compte du jeu de bout d’aube dans la simulation numérique diminue de manière significative le rendement prédit. L’impact des jeux au moyeu est cependant négligeable sur la prédiction de performance de la turbine. Finalement, une modification de l’aspirateur est proposée pour la suite du projet entrepris par le consortium de recherche.
|
5 |
Simulations numériques de l'écoulement turbulent dans un aspirateur de turbine hydrauliqueBeaubien, Carl-Anthony 19 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2013-2014. / Le présent mémoire a pour objectif d’améliorer la prédiction des phénomènes de perte dans les aspirateurs de turbines hydrauliques. Pour ce faire, l’écoulement dans un aspirateur caractérisé par une diminution abrupte du coefficient de récupération près du meilleur point de fonctionnement a été étudié. Une méthode avancée de modélisation de la turbulence, le DES, a été mise à l’essai, afin de déterminer les gains associés à une représentation plus fine des mouvements turbulents dans cette composante. Les requis méthodologiques liés à cette approche, notamment par rapport à la condition d’entrée, ont été explorés, dans le but de développer une meilleure expertise d’utilisation du DES. Il a été démontré que le profil de vitesse radiale imposé dans le plan d’entrée du domaine de calcul altère de façon significative l’écoulement en aval et les performances prédites. Avec le profil de vitesse radiale mesuré expérimentalement, l’allure de la courbe de performance de l’aspirateur a pu être assez bien reproduite avec l’approche de modélisation de la turbulence URANS. Toutefois, certains aspects des simulations ne concordent pas bien avec les mesures expérimentales, c’est notamment le cas de l’écart de débit entre les deux canaux de sortie. Il a été établi que les structures d’écoulement en rotation sous les aubes de la roue nécessitent une discrétisation spatiale et temporelle extrêmement fine pour éviter qu’elles se diffusent prématurément sous le plan d’entrée. Toutefois, au point d’opération considéré, leur influence sur les performances de l’aspirateur s’est avérée très faible. Les simulations DES et URANS de l’aspirateur où des conditions d’entrée axisymétriques ont été imposées ont prédit des performances similaires. Cependant, le DES permet de simuler une dynamique tourbillonnaire beaucoup plus riche, avec un maillage et un pas de temps similaire au URANS, tout en étant largement moins dépendant des quantités turbulentes modélisées imposées dans le plan d’entrée. / The work carried throughout this thesis has for objective to enhance losses predictions in hydraulic turbines draft tube. In order to acheive this, the flow in a draft tube charaterized by a sharp drop in the pressure recovery coefficient near the best efficiency point was studied. Detached Eddy Simulation (DES), an advanced turbulence modeling approach, was put to the test, in order to asses the gain attributable to a finer and more precise description of turbulent motions in this component. The numerical methods required associated to this approach, especially regarding the inlet boundary condition, were investigated. It was shown that the radial velocity profile specified at the inlet of the computational domain alters significantly the flow downstream and the predicted performance. With the measured radial velocity profile specified at the inlet of the draft tube, reasonnable agreement was found between URANS numerical results and experimental measurements of pressure recovery. However, some aspects of the numerical simulations does not agree well with experimental data. It is the case for flow imbalance between the two outlet bays. It was established that rotating flow structures underneath the runner blades require extremely fine grid and time step resolution to avoid their premature diffusion underneath the inlet plane. Nevertheless, at the studied operating point, their influence on draft tube performance was found to be very limited. DES and URANS simulations of the draft tube where axisymmetric inlet boundary conditions were imposed predicted similar pressure recovery. However, DES enables to simulate much more complex and rich turbulent motions, at a computational cost similar to the one of a URANS simulatation and with much less influence from the modeled turbulent quantities specified at the inlet plane.
|
6 |
Intégration et validation expérimentale de la méthode VOF dans les calculs aérodynamiques automobiles: application au cas de l'entrainement d'eau dans les circuits de climatisation / Integration and experimentale validation of the VOF method in automotive aerodynamics computations: application to water entrainment into the HVAC system.Berger, Rémi 26 October 2010 (has links)
Cette étude porte sur l'utilisation conjointe (appelée ” couplage ”) de modèle de turbulence à grandes échelles LES (Large Eddy Simulation) et du modèle multiphasique VOF (Volume of Fluid). Cette utilisation conjointe est nécessaire dans de nombreuses applications industrielles comme celles de l'automobile où l'on recherche par exemple à évaluer les prestations diphasiques de l'auvent liées au phénomène d'entraînement et d'ingestion d'une nappe d'eau par le HVAC (système d'air conditionné). Cependant, l'utilisation conjointe de ces méthodes nécessite un traitement particulier de la turbulence proche de la surface liquide afin de reproduire convenablement la quantité de mouvement transmise depuis la phase gazeuse, motrice, jusque dans la phase liquide.<p><p>Basée sur une approche numérique et expérimentale, notre étude est articulée autour de trois axes. Tout d'abord, le développement de techniques de mesures spécifiques pour l'étude expérimentale de notre problématique: le LeDaR pour mesurer les déformées d'une interface et la PIV d'interface afin d'accéder aux champs de vitesse et de turbulence dans chacune des deux phases. Le second axe est la constitution d'une base de données expérimentales sur une configuration de type jet impactant sur une surface liquide représentative des phénomènes rencontrés dans l'auvent. Enfin, le troisième axe de travail est l'évaluation des modèles existants dans le code Ansys Fluent et à partir de cette analyse le développement et la validation de modèles de couplage LES-VOF.<p><p>L'évaluation des modèles développés a permis de valider une stratégie de calcul adaptée aux simulations de l'entraînement d'une surface d'eau par un écoulement d'air turbulent. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
7 |
Numerical simulations of transport processes in magnetohydrodynamic turbulenceTeaca, Bogdan 09 September 2010 (has links)
Le couplage important entre les différentes échelles d’un écoulement est une des caractéristiques prin-cipales des turbulences. Cela est exprimé mathématiquement par les termes non linéaires présents dans les équations d’équilibre de l’écoulement, dominants en dynamique turbulente. En magnétohy-drodynamique (MHD), la force de Lorentz influe sur l’équation de conservation de l’impulsion et le nombre de termes non linéaires passe à quatre au lieu d’un seul pour un fluide non conducteur.<p>L’objectif principal de cette thèse est d’analyser le transport d’énergie inter-échelles en utilisant une simulation numérique directe d’un écoulement turbulent MHD. Les propriétés de localité du transport de l’énergie entre les échelles pour un écoulement anisotropique ou isotropique, généré par la présence d’un champ magnétique constant, sont renforcées. Un objectif secondaire est d’établir un cadre de travail pour l’étude du transport de particules test chargées dans un champ électromagnétique turbu-lent, i.e. généré par le mouvement d’un fluide conducteur, qui possède des structures à plusieurs ordres de grandeur. La structure de la thèse est présentée ci-dessous.<p>Dans la première partie, composée des deux premiers chapitres, l’auteur présente les notions de turbu-lences, aussi bien hydrodynamiques que MHD. Ces deux chapitres sont des synthèses.<p>La deuxième partie est la principale source de nouveaux résultats. Le chapitre 3 présente les méthodes numériques pour la résolution des équations, les méthodes pseudo-spectrales. Un nouveau type de force est introduit, imposant un niveau de dissipation pour tous les invariants. Dans le chapitre 4, il est effectué une analyse du transfert d'énergie entre ordres de grandeur pour les turbulences MHD. Pour explorer ces transferts d'énergie, le domaine spectral est décomposé en une série de coques de même nombre d'onde. Le transfert moyen d'énergie entre ces coques est analysé. Les transferts d'énergie s'avèrent être surtout locaux en ordre de grandeur, alors qu'une contribution non locale existe due à la force. En présence d'un champ magnétique, l'écoulement développe une direction préférentielle, une anisotropie, où une idée nouvelle de décomposition de l'espace spectral en structures annulaires est présentée. Utilisant cette décomposition annulaire on trouve que le transfert entre anneaux est local, surtout dans les anneaux de direction perpendiculaire au champ magnétique. Pour les turbulences isotropiques, dans le chapitre 5, la localité des flux d'énergie est explorée par le biais de fonctions de localité. Dans le cas de la turbulence MHD, nous avons un comportement non local plus prononcé.<p>La dernière partie, les chapitres 6 et 7, présente le formalisme de suivi des trajectoires de particules chargées évoluant dans un champ électromagnétique turbulent. L'influence de la méthode d'interpola-tion du solveur de particules est étudiée avant la présentation des concepts liés au transport de particu-les et aux régimes de diffusion. L'adiabatisme du mouvement des particules chargées est discuté et le transport de particules chargées dans un champ magnétique turbulent est montré en exemple.<p> / Doctorat en sciences, Spécialisation physique / info:eu-repo/semantics/nonPublished
|
8 |
Magnetohydrodynamic turbulence modelling: application to the dynamo effect / Modélisation de la turbulence magnétohydrodynamique: application à l'effet dynamoLessinnes, Thomas 21 May 2010 (has links)
La magnétohydrodynamique (MHD) est la science et le formalisme qui décrivent les mouvements d'un fluide conducteur d'électricité. Il est possible que de tels mouvements donnent lieu à l'effet dynamo qui consiste en la génération d'un champ magnétique stable et de grande échelle. Ce phénomène est vraisemblablement à l'origine des champs magnétiques des planètes, des étoiles et des galaxies. <p><p>Il est surprenant qu'alors que les mouvements fluides à l'intérieur de ces objets célestes sont turbulents, les champs magnétiques généré soient de grande échelle spatiale et stables sur de longues périodes de temps. De plus, ils peuvent présenter une dynamique temporelle régulière comme c'est le cas pour le champ magnétique solaire dont la polarité s'inverse tous les onze ans. <p><p>Décrire et prédire les mouvements d'un fluide turbulent reste l'un des problèmes les plus difficiles de la mécanique classique. <p>%La description aussi bien analytique que numérique d'un fluide hautement turbulent est d'une effroyable complexité, si pas tout simplement impraticable. Dans cette situation, <p>Il est donc utile de construire des modèles aussi proches que possible du système de départ mais de moindre complexité de sorte que des études théoriques et numériques deviennent envisageables.<p><p>Deux approches ont été considérées ici. D'une part, nous avons développé des modèles présentant un très petit nombre de degrés de liberté (de l'ordre de la dizaine). Une étude analytique est alors possible. Ces modèles ont une dépendance en les paramètres physiques - nombres de Reynolds cinétique et magnétique et injection d'hélicité - qualitativement similaire aux dynamos célestes et expérimentales.<p><p>D'autre part, les modèles en couches permettent de caractériser les transferts d'énergie entre les structures de différentes tailles présentes au sein du champ de vitesse. Nous avons développé un nouveau formalisme qui permet d'étudier aussi les échanges avec le champ magnétique. <p><p>De plus, nous proposons une étude de la MHD dans le cadre de la décomposition hélicoïdale des champs solénoïdaux - une idée similaire à la décomposition de la lumière en composantes polarisées et que nous sommes les premiers à appliquer à la MHD. Nous avons montré comment exploiter cette approche pour déduire systématiquement des modèles simplifiés de la MHD. En particulier, nos méthodes multiplient le nombre de situations descriptibles par les modèles en couche comme par exemple le problème anisotrope de la turbulence en rotation. Elles permettent aussi de construire des modèles à basse dimension en calquant les résultats de simulations numériques directes. Ces modèles peuvent alors être étudiés à moindre coûts.<p><p><p>_______________<p><p><p><p><p>Magnetohydrodynamics (MHD) is both the science and the formalism that describe the motion of an electro-conducting fluid. Such motion may yield the dynamo effect consisting in the spontaneous generation of a large scale stationary magnetic field. This phenomenon is most likely the reason behind the existence of planetary, stellar and galactic magnetic fields. <p>\ / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.1104 seconds