• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 157
  • 25
  • 10
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 237
  • 107
  • 52
  • 50
  • 39
  • 30
  • 25
  • 25
  • 22
  • 20
  • 19
  • 19
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

The Hatching and Emergence of Loggerhead Turtle (Caretta caretta) Hatchlings

Demmer, Richard J. 01 April 1981 (has links) (PDF)
Loggerhead turtle (Caretta caretta) eggs were collected at the time of laying during the summer of 1977 on the beaches of Canaveral National Seashore and the Merritt Island National Wildlife Refuge in Brevard County, Florida. The eggs were placed in land-lines buckets and maintained at ambient temperature in a house trailer hatchery. After 50 to 55 days of incubation whole or partial clutches were transferred to glass observation containers and covered to a depth of 20 cm. Hatching and emergence behavior were visually observed and activity was timed on an event recorder that was activated by four motion switches placed within or above the clutch. Pipping of the eggs occurred at a mean of 60.5 days after egg deposition. Emergence occurred at a mean of 61.8 hours after pipping and 63.1 days after egg deposition. The hatching and emergence sequence was described. It was concluded that hatching and emergence were socially facilitated. A mechanism for socially facilitated hatching was proposed. Volumetric reduction of the nest behavior before or during pipping was described. Emergence may be inhibited by rising temperatures in the morning and stimulated by falling temperatures within a certain range at night. Social facilitation, in addition to the obvious value of providing a means for reaching the surface, was apparently advantageous to hatchlings as they emerged and raced towards the surf en masse. Under these conditions predators are likely to be efficient than they would be if hatchlings emerged singly.
102

Plasma levels of vitamins A and E in marine turtles (Chelonia mydas and Caretta caretta)

Frutchey, Karen Patricia 01 January 2004 (has links) (PDF)
Insight into blood values for free-ranging populations of chelonians is very incomplete. A better understanding of marine turtle ecological physiology is necessary for population health assessments and conservation management plans. Vitamins A and E are fat-soluble compounds required by vertebrates. Vitamin A is required for growth, differentiation and integrity of epithelial tissue, bone remodeling, reproduction and vision. Vitamin E is a constituent of cell membranes where it is an antioxidant and free radical scavenger. Both nutrients are required for reproduction and immune system function. I determined concentrations of vitamins A and E in plasma of blood samples from Caretta caretta and Chelonia mydas using high performance liquid chromatography (HPLC). The first investigation focused on vitamin concentrations in nesting Caretta caretta and Chelonia mydas in the Archie Carr National Wildlife Refuge, Melbourne Beach, Florida, USA. Vitamin A concentrations were significantly higher in the herbivore, Chelonia than in the carnivore, Caretta. Plasma vitamin A concentrations decreased in Caretta as the nesting season progressed, while they remained constant in Chelonia. Plasma vitamin A concentrations only decline after liver stores of the vitamin are depleted, so it appears Caretta did not feed during the nesting season. Plasma vitamin concentrations in Chelonia remained stable during the nesting season, so it is not clear whether green turtles fed or fasted as the season progressed. Plasma vitamin E concentrations were significantly higher in Caretta than in Chelonia. This suggests that marine turtles follow the previously established chelonian pattern of carnivores having greater circulating concentrations of vitamin Ethan herbivores. The second study focused on vitamin concentrations in subadult Caretta and juvenile Chelonia from three Atlantic coastal habitats: Indian River Lagoon (IRL), the Nearshore Reef and Trident Submarine Basin. The disease fibropapillomatosis (FP) is prevalent in turtles from the IRL and the Nearshore Reef but not Trident Submarine Basin. Vitamin E concentrations differed significantly among turtles with different degrees of FP affliction. Turtles moderately afflicted with had significantly lower plasma concentrations of vitamin E compared with turtles not afflicted with the disease and as a result, may have compromised immune status. In contrast, however, severely afflicted turtles did not have lower circulating levels of vitamin E compared with those of mildly afflicted turtles. Vitamin A varied significantly among Chelonia from the three different developmental habitats. Turtles from the IRL had significantly higher concentrations of circulating vitamin A than turtles from both the Reef and Trident Basin. Chelonia on the Reef had significantly higher circulating concentrations of vitamin E than turtles in Trident Basin. Chelonia in the IRL had vitamin E concentrations that did not differ significantly from either the Nearshore Reef or Trident Basin turtles. Plasma vitamin E concentrations increased with decreasing straight-line carapace length in Chelonia. This is one of the largest scale vitamin studies conducted on reptiles and will contribute to conservation of marine turtles by providing baseline data on vitamins A and E. This information is useful for wildlife rehabilitators and zoos and aquaria with captive marine turtles. Effects of reproduction and disease on plasma concentrations of vitamins A and E are also discussed in this thesis.
103

Orientation and survival of hatchlings and reproductive ecology of the common snapping turtle (Chelydra serpentina) in southern Quebec

Robinson, Candace January 1989 (has links)
No description available.
104

Children, cybernetics, and programmable turtles

Martin, Fred January 1988 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1988. / Includes bibliographical references. / by Fred Martin. / M.S.
105

Seasonal reproduction and sexual size dimorphism of the African helmeted turtle, Pelomedusa subrufa (family Pelomedusidae)

Strydom, Aliki V. 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2001. / ENGLISH ABSTRACT: PELOMEDUSA SUBRUFA is a freshwater turtle widely distributed throughout Africa and Madagascar, and is described as a Tropical to Sub-tropical species. 1 examined the female and male reproductive cycles of P. subrufa, over a 20-month period to determine whether they display a typical Tropical to Sub-tropical type reproductive cycle (pre-nuptial) or a typical Temperate Zone type reproductive cycle (post-nuptial). Blood and tissue samples were collected from wild specimens captured in the Western Cape, South Africa and these samples were supplemented by tissue samples obtained from museum specimens. In female P. subrufa seasonal variation in related circulating reproductive hormones in the plasma (estradiol, progesterone, and testosterone) were analyzed using validated ELISA kits. Plasma vitellogenin (yolk precursor produced in liver) was measured using a newly developed universal vitellogenin ELISA for vertebrates (UNIVTG). Ovarian follicles were measured (± 0.1 mm) and female ovaries were staged macroscopically (non-active, pre-vitellogenic, vitellogenic, gravid), and results were confirmed via histological sectioning of ovaries and oviducts. Females exhibited a cyclic reproductive pattern, with distinct phases of follicular enlargement (vitellogenesis), ovulation and a gravid period. Seasonal timing of the reproductive cycle coincided with those of other temperate zone freshwater turtles. Vitellogenic recrudescence began in summer (late December), and continued unabated through winter with ovulation occurring in the following spring (September-October). My data suggested that P. subrufa females mostly lay a single clutch of eggs during the late-spnng summer period (September through January). Clutch size varied between 7 -3 7 eggs, with the number of eggs being significantly correlated with maternal body size (r = 0.82, P < 0 001). Plasma estradiol and plasma vitellogenin concentrations peaked once during the ovarian cycle, typically coinciding with the period of early- to mid-vitellogenesis in late summer. Plasma testosterone varied throughout the year, but significant increases were measured during the ovulation and mating period in spring. Plasma progesterone concentrations were significantly elevated during the gestation period prior to ovi-position in mid-summer (December). In male P. subrufa spermatogenesis in mature specimens was distinctly seasonal and timing of the reproductive cycle coincided with those of other temperate zone freshwater turtles. Spermatogemc recrudescence began in summer, following emergence from a winter hibernation period (brumation) and spring mating. Peak testicular volume and maximum spermiogemc activity occurred in late summer and early autumn. Testicular regression commenced in autumn through winter. Spermatozoa were abundant in the ducti epididymi throughout the year. Plasma testosterone concentrations peaked once during the testicular cycle, typically coinciding with spermio genes is in late summer, early autumn. Ducti epididymi diameter showed significant variation throughout the year, whereas the epithelial cell height showed no significant seasonal variation. Peak secretory activity coincided with spermiogemc activity and high circulating testosterone concentrations in late summer, early autumn. Testicular recrudescence was correlated with increasing ambient air temperatures, photopenod and summer rainfall, whereas testicular regression, during late autumn, corresponded conversely with decreasing ambient air temperatures, photopenod and rainfall. Female and male reproductive cycles were asynchronous in that the peak spermatogenic activity occurred in autumn at the time when most females were depositing yolk in growing ovarian follicles. Therefore, adult females displayed a typical postnuptial vitellogemc cycle and adult males displayed a typical post-nuptial spermatogenic cycle. Differences between sexes in body size are common in many animals, and the African helmeted turtle is no exception. Sexual size dimorphism (SSD) in P. subrufa was pronounced, and using principal component analysis, it was clear that adult male P. subrufa was significantly larger than adult females. Using carapace length as the measure of body size (covariate), adult males, adult females, and juveniles differed significantly in absolute size of the carapace width, carapace depth, plastron length, plastron width, and head depth. However, there was no significant difference between adult males, adult females and juveniles in head width and head length. Therefore, adult males were larger than adult females in the seven traits measured, except in carapace depth where the females were significantly larger In the occurrence of ontogenetic growth patterns, the adults grow at a slower rate than juveniles in plastron length. There was no significant difference between adults and juveniles in shell width, however in depth, the adults grow at a faster rate when compared to the juveniles. Adults significantly grow at a faster rate than juveniles in absolute head size as well. However, when these traits were used as a whole data set (eight traits measured), there was no difference in growth rate between adults of either sex. Similarly, there was no significant difference in adults compared to juveniles in shell size, however, adults grow at a faster rate than juveniles in absolute body size and head size. Differences in body size, and in the size of traits such as shell measurements and head measurements relative to absolute body size, were assessed to clarify SSD of P. subrufa in South Africa. / AFRIKAANSE OPSOMMING: PELOMEDUSA SUBRUFA is ‘n varswaterskilpad wat wyd verspreid oor Afrika en Madagascar voorkom en word beskryf as ‘n Tropiese tot Sub-tropiese spesies. Die manlike en vroulike voortplantingspatroon van P. subrufa is oor ‘n tydperk van 20 maande bestudeer om vas te stel of hul voortplanting ooreenstem met ‘n tipiese tropiesie tot sub-tropiese voortplantingspatroon of ‘n tipiese gematigde-sone voortplantingspatroon. Waterskilpaaie is uit damme in die Wes-Kaap, Suid-Afnka gevang en bloed- en weefselmonsters is versamel. Materiaal en data is aangevul deur weefselmonsters van waterskilpaaie wat in museumversamelings gehuisves word. Ovarium follikels in P. subrufa wyfies is gemeet en die wyfies se ovanums is makroskopies gegradeer (onaktief, pre-vitellogenies, vitellogemes, dragtig) en resultate is deur histologiese snitte van die ovaria en ovidukte bevestig. Wyfies vertoon ‘n sikliese voortplantingspatroon, met duidelike fases van follikulere groei (vetllogenese), ovulasie en dragtigheid. Sirkulerende voortplantingshormone in die bloedplasma (estradiol, progesteroon en testosteroon) is ook geanaliseer met behulp van gevalideerde hormoonspesifieke ELISA bepalings. Plasma vitellogeen (‘n dooiervoorloper wat in die lewer vervaardig word) konsentrasies is ook bepaal met ‘n nuut ontwikkelde, universele (spesifiek vir werweldiere) vitellogeen ELISA (UNIVTG). Seisoenale tydsberekemng van die voortplantingsiklus het ooreengestem met die van ander varswaterskilpaaie vanuit die Gemagtigde-sone. Vitellogenese het in die somer begin en duur voort deur die grootste gedeelte van die somer, herfs en winter gevolg deur ovulasie in die daaropvolgende lente (September - Oktober). Die data ingewin stel voor d a t/5. subrufa wyfies meestal een broeisel eiers tydens laat lente-somer le (September tot Januane). Broeiselgrootte het gewissel tussen 7-37 eiers, met die hoeveelheid eiers wat beduidend met moederlike liggaamsgrootte gekorreleer was (r = 0.82, P < 0.001). Plasma estradiol en vitellogeen konsentrasies het een keer tydens die ovariumsiklus gepiek, en gewoonlik saamgeval met vroee tot middel vitellogenese in die laat somer. Plasma testosteroon het dwarsdeur die jaar gevarieer, maar beduidende toenames is gemeet tydens ovulasie en die paartydperk in die lente. Plasma progesteroon konsentrasies was beduidend hoer tydens dragtigheid kort voor eierlegging in die middel van die somer (Desember). In volwasse P. subrufa mannetjies was spermatogenese sterk seisoenaal en het die voortplantingsiklus ooreengestem met die van ander varswaterskilpadspesies wat in die gematigde streke voorkom. Na ‘n oorwinteringsperiode (brumasie), volg die panngstydperk gedurende die lente. ‘n Nuwe spermatogemese siklus het in die somer begin. Maksimale spermatogeniese aktiwiteit en testis-volume word in die laat somer en vroee herfs bereik. Testikulere regressie neem in aanvang in die herfs en duur voort tot na paringstyd in die lente. Tydens testikulere regressie word spermatosoe in die ducti epididymi gestoor. Plasma testosteroon konsentrasies het in die laat somer en vroee herfs gedurende die testikulere siklus, spermiogenese (sperm produksie fase), gepiek. Die grootte (omtrek) van die ducti epididymi het beduidende vanasie dwarsdeur die jaar getoon, terwyl epiteel selhoogtes geen beduidende seisoenale vanasie getoon het nie. Piek sekretonese aktiwiteit het saamgeval met spermiogeniese aktiwiteit en hoe vlakke van sirkulerende testosteroon tydens laat somer en vroee herfs. Testikulere groei het goed gekorreleer met toenemende omgewingstemperatuur, fotopenode en reenval, terwyl testikulere regressie in herfs met ‘n daling in omgewingstemperature, fotopenode en reenval gekorrespondeer het. Die vroulike en manlike voortplantingspatrone was nie goed ge-sinkroniseerd nie, deurdat piek spermatogeniese aktiwiteit tydens herfs voorgekom het, gedurende die tyd waann meeste wyfies besig was om dooier in groeiende ovarium follikels neer te le. Daarteenoor vertoon die mannetjies testikulere regressie tydens die pre-ovulatoriese fase en ovulasie penode van die wyfies. Dus toon volwasse wyfies ‘n tipiese gematigde sone vitellogeniese patron en volwasse mannetjies ‘n tipiese gematigde sone spermatogeniese patroon. ‘n Verskil in liggaamsgrootte tussen die geslagte is 'n algemene verskynsel by baie diere en P. subrufa is geen uitsondering me. Daar was wesenlike geslagtelike grootteverskille (SSD) in P. subrufa en ‘n hoofkomponent analise (PC A) het getoon dat daar beduidende morfometnese verskille tussen volwasse mannetjies en wyfies was. Deur karapakslengte as 'n maatstaf vir liggaamsgrootte te gebruik (mede-veranderlike), het volwasse mannetjies, volwasse wyfies en onvolwassenes beduidend verskil ten opsigte van absolute grootte van hul karapaksbreedte, karapaksdiepte, plastronlengte, plastronbreedte en kopdiepte. Geen beduidende verskil in kopbreedte en koplengte in volwasse mannetjies, volwasse wyfies en onvolwassenes is gevind nie. Derhalwe was volwasse mannetjies groter as volwasse wyfies in sewe van die liggaamseienskappe wat gemeet is, buiten vir karapaksdiepte waar die wyfies beduidend groter was. In terme van die voorkoms van ontogenetiese groeipatrone het volwassenes teen ‘n stadiger tempo as onvolwassenes in plastronlengte toegeneem. Daar was geen beduidende verskil in die groeitempo van dopbreedte tussen volwassenes en onvolwassenes nie, alhoewel dopdiepte van volwassenes teen ‘n vinniger tempo gegroei het as die van onvolwassenes. Absolute kopgrootte van volwassenes het ook teen ‘n vinniger tempo gegroei as in onvolwassenes. Wanneer hierdie eienskappe as ‘n volledige datastel gebruik word (al agt gemete eienskappe), wil dit voorkom asof daar geen verskil in groeitempo van volwassenes van die onderskeidelike geslagte is me. Daar was geen beduidende verskil tussen volwassenes en onvolwassenes, ten opsigte van dopgrootte nie, alhoewel volwassenes klaarblyklik teen ‘n vinniger tempo in liggaamsgrootte en kopgrootte toeneem. Verskille in liggaamsgrootte en grootte van ander veranderlikes, soos byvoorbeeld dop- en kop-eienskappe, relatief tot absolute liggaamsgrootte, word aangebied om geslagsdimorfisme in P. subrufa vir die eerste keer te beskryf.
106

Quantifying the energetic cost of disorientation in loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtle hatchlings

Unknown Date (has links)
The photopollution of beaches caused by artificial light sources can interfere with sea turtle hatchlings' ability to orient properly towards the sea. Exhaustion due to extended disorientation crawling may then increase hatchling mortality. This study evaluated the energetic consequences of long-distance crawls in green and loggerhead sea turtle hatchlings. Turtles crawled for 200 m or 500 m on a treadmill, followed by a 30 minute evaluation of swim performance. Metabolic activity was quantified via measures of blood glucose, blood lactate, and oxygen consumption. No significant changes in metabolism resulted from long-distance crawling activity in loggerheads ; however, loggerheads rested for extended periods of time during the crawl trials, often unresponsive to stimuli. This behavior implies that loggerhead hatchlings would be vulnerable to predation or temperature stress due to exhaustion from extended periods of crawling. Further data is required to draw any significant conclusions about long-term disorientatin crawling in green hatchlings. / by Sean Williams. / Thesis (M.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
107

Plasma Steroid Hormones in Loggerhead and Green Sea Turtle Hatchlings

Unknown Date (has links)
Florida’s sea turtle populations are increasing due to conservation efforts; however, sea turtle species are vulnerable to climate change. Turtles exhibit temperaturedependent sex determination, in which nest environment influences sex. Environmental changes may produce altered sex ratios that limit reproduction potential; therefore hatchling sex ratios should be monitored. Hatchlings are not externally sexually dimorphic, making sex identification difficult. This study established baseline plasma hormone concentrations in hatchling and post-hatchling green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtles using High Performance Liquid Chromatography. Five hormones were assayed and were present in the majority of samples (testosterone: N.D.-10.12, progesterone: N.D.-0.43, estradiol: N.D.-4.78, estriol: N.D.-5.55 and estrone: N.D.-1.67 μg/mL). Plasma hormones did not distinguish hatchling sex because male and female ranges overlapped. Hormone concentrations varied with sex but also with incubation temperature, indicating that climate change could impact hatchling and posthatchling hormone profiles and thus could impact future fitness. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
108

Spatial and temporal distributions of sea turtles within the Florida current and surrounding waters

Unknown Date (has links)
Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to their migratory nature and use of large current systems. Concentrations of animals can shift because turtles undergo large-scale migrations and habitat shifts seasonally as well as a function of lifestage. Surface counts of marine turtles in waters off Florida’s east coast were made in and adjacent to the Florida Current using standard aerial surveys. While it is understood that marine turtles use waters off the eastern coast of Florida, here we document the magnitude of the shift in turtle presence each season throughout a two year study and identify habitat characteristics where turtles occur most frequently. Our assessment of marine turtles in the waters off southeast Florida provide valuable metrics describing the in-water biology of sea turtles in this area to inform future management strategies of these endangered species. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
109

Physiological Effects of Disorientation in Loggerhead (Caretta caretta) and Green (Chelonia mydas) Sea Turtle Hatchlings

Unknown Date (has links)
Following nest emergence, sea turtle hatchling dispersal can be disrupted by artificial light or skyglow from urban areas. Mis- or disorientation increases exposure to predation, thermal stress, and dehydration, could consume valuable energy, and thus influence the likelihood of survival. This study utilized laboratory simulations of extended crawl distances and field observations to investigate the energy cost of disorientation crawling on loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtle hatchlings and the impact on the subsequent swim frenzy. Extended crawls increased oxygen consumption, decreased plasma glucose, and reduced green hatchling swim performance following a 200m crawl. Surprisingly, plasma lactate concentrations did not increase with crawl distance, likely due to frequent rest periods that would, however, increase time on the beach and thus exposure to predators. This research may provide managers with physiological data to determine best practices for sea turtle conservation and adds to the biological knowledge of these animals. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
110

Brevetoxin Metabolism and Physiology - A Freshwater Model of Morbidity in Endangered Sea Turtles

Unknown Date (has links)
The dinoflagellate Karenia brevis is one organism responsible for harmful algal blooms (HABs) that severely impact marine life. K. brevis produces a suite of neurotoxins referred to as brevetoxins (PbTx) which bind to voltage-gated sodium channels (VGSCs) in excitable tissues, affecting cellular permeability leading to a suite of symptoms and potentially cell death. Brevetoxicosis is difficult to treat in sea turtles as the physiological impacts have not been investigated and the magnitude and duration of brevetoxin exposure are generally unknown. Due to their threatened and endangered status, experimental exposures cannot be performed to determine the fate of brevetoxin in sea turtle tissues, making it difficult to design appropriate treatments. The freshwater turtle, Trachemys scripta, was utilized as a model for brevetoxin exposure in turtles. Turtles were exposed to intratracheal instillation (10.53μg/kg) or oral dosing (33.48μg/kg) of PbTx-3 3x weekly over a period of 2-4 weeks. Tissues and fluids were collected for ELISA to determine PbTx-3 uptake and distribution, routes of excretion and rates of clearance (1h-1wk post-exposure). Tissues were also preserved for histopathology. Primary turtle neuronal cell cultures were exposed to PbTx-3 in the presence and absence of various agonists and antagonists to determine brevetoxin’s mode of action. PbTx-3 was widely distributed in all tissues and fluids following both intratracheal and oral exposures, but was largely cleared from the system within 24 hours; PbTx-3 moved into the bile and feces over 48h post exposure indicating that this is the main route of excretion. While exposed animals showed clear behavioral symptoms of toxicity including muscle twitching, swimming in circles, and ataxia, there was no evident tissue pathology. Despite the evident behavioral effects, turtle neurons are surprisingly resistant to PbTx-3, with an EC50 significantly higher than is seen in mammalian neurons. While PbTx-3 exposure resulted in significant Ca2+ influx, various antagonists prevented Ca2+ influx when added with PbTx-3 confirming the mechanism of action through VGSCs. Upregulation of Hsp72 in the turtle brain could be enhancing cell survival. Based on results, intralipid treatment post PbTx-3 exposure rapidly decreases symptoms and proves to be a suitable treatment for toxin exposure. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.0659 seconds