Spelling suggestions: "subject:"win screw"" "subject:"twin screw""
21 |
Etude de la déconstruction de résidus agricoles lignocellulosiques par extrusion biocatalytique / Study of the deconstruction of agricultural lignocellulosic lant residues by biocatalytic extrusionGatt, Etienne 24 January 2019 (has links)
L’extrusion biocatalytique, ou bioextrusion, est une technique d’extrusion réactive utilisant des enzymes comme catalyseurs. Cette technique est considérée en temps qu’étape intermédiaire, subséquente au prétraitement physico-chimique et précédente à l’hydrolyse enzymatique enréacteur fermé. L’utilisation de l’extrusion permet un procédé continu, facilement modulable et adaptable à des conditions de hautes consistances, de nombreuses biomasses et facilement transférable à l’échelle industrielle. Néanmoins, les données bibliographiques font ressortir la complexité des entrants et leurs interactions lors de la bioextrusion de biomasses lignocellulosiques. Les conclusions des bioextrusions de biomasses amidonnées soulignent l’importance de l’étude de l’influence de la concentration en substrat et en enzymes. Les résultats obtenus à partir de la bioextrusion des biomasses lignocellulosiques valident l’existence d’une activité enzymatique en extrudeuse malgré la contrainte thermomécanique et le temps de séjour limité. Lors de cette étape, l’hydrolyse de la fraction cellulosique est favorisée pour des milieux concentrés en substrat et en enzymes. Des modifications significatives des fractions cellulosiques cristallines et amorphes en surface, des réductions des tailles de particules, une dégradation visuelle des structures de la biomasse et l’augmentation de la sensibilité à la décomposition thermique, sont aussi observées sur la fraction solide. L’hydrolyse enzymatique des bioextrudats est prolongée en réacteur fermé. La bioextrusion permet des améliorations significatives des taux et vitesses de conversion des sucres sur le long terme, jusqu’à 48 h. Les gains observés sont relativement constants pour la paille de blé et augmentent avec le temps pour les écorces de bouleau et les résidus de maïs. Post-extrusion, la concentration en substrat influence négativement la conversion des sucres. Cependant, les plus-values de conversion du glucose lié à la bioextrusion de paille de blé sont principalement observables pour des concentrations en substrat et en enzymes élevées. À partir de 4 h, des baisses significatives de la conversion du xylose sont observées après bioextrusion. Les déstructurations de la fraction solide, déjà observées au cours la bioextrusion, se poursuivent en réacteur fermé. Les meilleurs résultats hydrolytiques aux niveaux des hautes charges en enzymes et en substrat sont associables aux bonnes conditions de mélanges caractéristiques des éléments bilobes. L’ensemble enzymatique est probablement réparti de façon plus homogène (mélange distributif) pour cibler plus de sites disponibles. De plus, le mélangé dispersif limite la proximité entre enzymes de même type et les gênes associées. Le procédé d’extrusion permet une agitation efficace, un bon transfert de masse et probablement un meilleur contact entre enzymes et substrat. Les moins bons résultats de conversion du xylose sont probablement à relier à des phénomènes d’adsorption non-spécifique, ou encore de désactivation des hémicellulases, provoqués par l’intensité des contraintes thermomécaniques et les résidus ligneux. Les bons résultats de déstructuration après bioextrusionsont associables à une action synergétique des contraintes mécanique et biochimique. Les analyses d’autofluorescence montrent l’évolution de la fraction ligneuse dans le processus de déconstruction de la fraction solide. Une production progressive de particules très fines,visiblement associée à la fraction ligneuse, est observée. Des complexes lignine-carbohydratessont aussi détectés dans la fraction liquide. Etant peu, voire pas hydrolysable par voie enzymatique, ces fractions hétéropolymériques sont un frein à la déconstruction. Si la déstructuration des lignines est probablement majoritairement liée au prétraitement alcalin, le procédé de bioextrusion provoque une diminution de la teneur en hétéropolymères de plus hautes masses moléculaires. / Biocatalytic extrusion, also named bioextrusion, is a reactive extrusion technique using enzymes as catalysts. Bioextrusion is considered as a link between the previous physico-chemical pretreatment (like alkaline extrusion) and the subsequent enzymatic hydrolysis in batch conditions. The extrusion allows a continuous, flexible and versatile process for high consistency media, easily transferable to the industrial level. However, complexity of both lignocellulosic biomass and lignocellulolytic enzymes and their interactions during the extrusion process are underlined by the literature. Numerous response surface methodology experiments with starchy biomass indicate that bioextrusion efficiency is mainly influenced by substrate and enzymes loading. Enzymatic activity during the bioextrusion process of lignocellulosic biomass is confirmed by the experiments despite the mechanical constraints and the limited residence time. During bioextrusion, best holocellulosic fraction hydrolysis results were obtained with high substrate and enzymes loadings. Significant modifications of the solid fraction like particule size reduction, visual deconstruction of the biomass structure, increased sensibility to thermal decomposition and the evolution of the surface exposure of crystalline and amorphous cellulose were observed. Enzymatic hydrolysis of the bioextrdates is prolonged in batch conditions. Clear improvements of speeds and rates of sugars conversion up to 48 h indicate a long term influence of the bioextrusion. Gain observed are steady for the pretreated wheat straw whereas it increases with time for corn residues and birch barks. Post-extrusion, a negative influence of the substrate loading is measured. However, best enhancements for the glucose conversion of pretreated wheat straw are detected for high substrate and enzymes loadings. From 4 to 48 h, significant losses in xylose conversion are measured with previous bioextrusion. Indicators of the solid fraction deconstruction, observed during the bioextrusion step, indicate a stronger biomass degradation after 48 h. Improvements of glucose conversion rates can be associated with good mixing conditions of the extruder, especially due to the use of kneading elements. Enzymes are probably more homogeneously distributed (distributive mixing) and can access more catalytic sites available. Moreover, dispersive mixing limits the enzyme jamming due to the biocatalysts concentration. Extrusion process permits an better agitation efficiency, good mass transfer conditions and probably a higher contact between substrate and enzymes. Lower xylose conversion results may be attributed to non-specific adsorptions or inactivation phenomena due to mechanical constraints and lignin residues. Good deconstruction results on the solid fraction may be associable with a synergetic action between mechanical and biochemical constraints. Autofluorescent signal analysis of the lignin fraction show its evolution during the deconstruction of the solid residue. During the hydrolysis, a progressive production of very small particles, appearing to be associated with the lignin fraction is observed. Lignin-carbohydrate complexes are also detected in the liquid fraction. These heteropolymeric complexes, difficult or even impossible for the enzymes to hydrolyze, are an obstacle to the biomass valorization. If lignin deconstruction is mainly due to the alkaline pretreatment, bioextrusion process seems to reduce the proportion of these heteropylymers with high molecular weights.
|
22 |
Dynamic Modelling, Measurement and Control of Co-rotating Twin-Screw ExtrudersElsey, Justin Rae January 2003 (has links)
Co-rotating twin-screw extruders are unique and versatile machines that are used widely in the plastics and food processing industries. Due to the large number of operating variables and design parameters available for manipulation and the complex interactions between them, it cannot be claimed that these extruders are currently being optimally utilised. The most significant improvement to the field of twin-screw extrusion would be through the provision of a generally applicable dynamic process model that is both computationally inexpensive and accurate. This would enable product design, process optimisation and process controller design to be performed cheaply and more thoroughly on a computer than can currently be achieved through experimental trials. This thesis is divided into three parts: dynamic modelling, measurement and control. The first part outlines the development of a dynamic model of the extrusion process which satisfies the above mentioned criteria. The dynamic model predicts quasi-3D spatial profiles of the degree of fill, pressure, temperature, specific mechanical energy input and concentrations of inert and reacting species in the extruder. The individual material transport models which constitute the dynamic model are examined closely for their accuracy and computational efficiency by comparing candidate models amongst themselves and against full 3D finite volume flow models. Several new modelling approaches are proposed in the course of this investigation. The dynamic model achieves a high degree of simplicity and flexibility by assuming a slight compressibility in the process material, allowing the pressure to be calculated directly from the degree of over-fill in each model element using an equation of state. Comparison of the model predictions with dynamic temperature, pressure and residence time distribution data from an extrusion cooking process indicates a good predictive capability. The model can perform dynamic step-change calculations for typical screw configurations in approximately 30 seconds on a 600 MHz Pentium 3 personal computer. The second part of this thesis relates to the measurement of product quality attributes of extruded materials. A digital image processing technique for measuring the bubble size distribution in extruded foams from cross sectional images is presented. It is recognised that this is an important product quality attribute, though difficult to measure accurately with existing techniques. The present technique is demonstrated on several different products. A simulation study of the formation mechanism of polymer foams is also performed. The measurement of product quality attributes such as bulk density and hardness in a manner suitable for automatic control is also addressed. This is achieved through the development of an acoustic sensor for inferring product attributes using the sounds emanating from the product as it leaves the extruder. This method is found to have good prediction ability on unseen data. The third and final part of this thesis relates to the automatic control of product quality attributes using multivariable model predictive controllers based on both direct and indirect control strategies. In the given case study, indirect control strategies, which seek to regulate the product quality attributes through the control of secondary process indicators such as temperature and pressure, are found to cause greater deviations in product quality than taking no corrective control action at all. Conversely, direct control strategies are shown to give tight control over the product quality attributes, provided that appropriate product quality sensors or inferential estimation techniques are available.
|
23 |
Advanced control of the twin screw extruderIqbal, Mohammad Hasan 11 1900 (has links)
This research deals with the modeling and control of a plasticating twin screw extruder (TSE) that will be used to obtain consistent product quality. The TSE is a widely used process technology for compounding raw polymers. Compounding creates a polymer with improved properties that satisfy the demand of modern plastic applications. Modeling and control of a TSE is challenging because of its high nonlinearity, inherent time delay, and multiple interactive dynamic behavior. A complete methodology is proposed in this thesis to design an advanced control scheme for a TSE. This methodology was used to develop a model predictive control scheme for a laboratory scale plasticating TSE and to implement the control scheme in real-time. The TSE has a processing length of 925 mm and a length to screw diameter ratio (L/D) of 37. High density polyethylenes with different melt indices were used as processing materials.
Manipulated variables and disturbance variables were selected based on knowledge of the process. Controlled variables were selected using a selection method that includes a steady state correlation between process output variables and product quality variables, and dynamic considerations. Two process output variables, melt temperature (Tm) at the die and melt pressure (Pm) at the die, were selected as controlled variables.
A new modeling approach was proposed to develop grey box models based on excitation in the extruder screw speed (N), one of the manipulated variables. The extruder was excited using a predesigned random binary sequence (RBS) type excitation in N and nonlinear models relating Tm and Pm to N were developed using this approach. System identification techniques were used to obtain model parameters. The obtained models have an autoregressive moving average with exogenous (ARMAX) input structure and the models explain the physics of the extrusion process successfully.
The TSE was also excited using a predesigned RBS in the feed rate (F) as a manipulated variable. Models relating Tm and Pm to F were developed using a classical system identification technique; both models have ARMAX structures. The model between Pm and F was found to give excellent prediction for data obtained from a stair type excitation, indicating that the obtained models provide a good representation of the dynamics of the twin screw extruder.
Analysis of the TSE open loop process indicated two manipulated variables, N and F, and two controlled variables, Tm and Pm. Thus, a model predictive controller (MPC) was designed using the developed models for this 2X2 system and implemented in real-time. The performance of the MPC was studied by checking its set-point tracking ability. The robustness of the MPC was also examined by imposing external disturbances.
Finally, a multimodel operating regime was used to model Tm and N. The operating regime was divided based on the screw speed, N. Local models were developed using system identification techniques. The global model was developed by combining local models using fuzzy logic methodology. Simulated results showed excellent response of Tm for a wide operating range. A similar approach was used to design a global nonlinear proportional-integral controller (n-PI) and a nonlinear MPC (n-MPC). Both the controllers showed good set-points tracking ability over the operating range. The multiple model-based MPC showed smooth transitions from one operating regime to another operating regime. / Process Control
|
24 |
Advanced control of the twin screw extruderIqbal, Mohammad Hasan Unknown Date
No description available.
|
25 |
Preparation of Thermoplastic Vulcanizates from Devulcanized Rubber and PolypropyleneMutyala, Prashant 06 November 2014 (has links)
One of the current problems faced by mankind is the problem of safe disposal of waste rubber. Statistics show that the number of waste tires is continuously increasing at a very rapid rate. Since rubber materials do not decompose easily (due to their crosslinked structure), they end up being a serious ???environmental problem???.
An intuitive solution to prevent the accumulation of the scrap tires is to continuously reuse them. A new patented reclamation method was discovered in our laboratory, which makes use of a twin screw extruder (TSE) in order to produce reclaimed rubber (referred as devulcanized rubber (DR) from here on) of very high quality. Also, this method has proven to be more economical than other commercial reclaiming methods. Products made solely from a reclaimed material face challenges from those made by virgin materials because of relatively poor properties. However, the striking advantage of using reclaimed rubbers is the cost reduction. Hence, it is important to work on establishing methods by which these reclaimed rubbers could be efficiently used and incorporated into present day products. The deterioration of properties could be minimized by blending them with varying amounts of other materials. A possibility in this direction is manufacturing of thermoplastic vulcanizates (TPVs) using reclaimed rubber and general purpose thermoplastics.
In accordance with this idea, the focus of this research is to prepare DR and polypropylene (PP) based TPVs. DR is unique as the rubber itself consists of two phases- one phase consisting of uncrosslinked (including devulcanized rubber molecules), and the other phase consisting of crosslinked (un-devulcanized) rubber. These un-devulcanized crumbs act as stress concentrators because they do not break-up easily, and lead to poor physical properties. Hence, this project tries to find out ways to increase the interfacial adhesion between the rubber and PP by using reactive and non-reactive techniques.
Preliminary experiments were carried out in a batch mixer to compare DR and rubber crumb (CR). DR based TPVs showed better properties than CR based TPVs, however, the properties were not useful for commercial applications. Sulphur based dynamic vulcanization was studied in a batch mixer and found to be not effective in improving the properties of DR based blends. On the other hand, DCP/ sulphur based curing system was found to show significant improvement in properties. Therefore, DCP/sulphur based curing package was studied in detail on the blends consisting of DR and PP. The optimum ratio of DCP/sulphur was found to vary depending on the ratio of DR/PP. A hypothesis regarding the mechanism of DCP/sulphur curing has been proposed, which seem to correlate well with the experimental results observed. Additionally, it was determined that DR prepared from tire rubber (DRT) performed better than DR prepared from waste EPDM (DRE) for the curing system used. Accordingly, experiments on a TSE were carried out using DRT and a combination of compatibilizing resins and curatives. This combination showed a drastic improvement in blends properties and once again the optimum ratio of compatibilizing resins seemed to depend on the ratio of DRT/PP.
As a result of the work, successful strategies based on reactive compatibilization techniques were developed in order to prepare useful TPVs having up to 70% DR. A series of compatibilization techniques has been evaluated using design of experiments and various characterization techniques such as mechanical tests, scanning electron microscopy, thermal analysis and crosslink density measurements. This led to the development of a formulation, which could improve the blend properties significantly. A tensile strength of around 10 MPa and an elongation-at-break of 150-180 % could be achieved for devulcanized rubber (70%) based TPVs, which has broadened the scope for its commercial applications. In addition to that, the process was established on a TSE that has enabled a continuous and steady production of these TPVs with reasonable throughputs.
|
26 |
Rotordynamics of Twin-Screw PumpsAboel Hassan Muhammed, Ameen 02 October 2013 (has links)
Twin-screw pumps are positive displacement machines. Two meshing screws connected by timing gears convey the fluid trapped in the screw chambers axially from suction to discharge and force it out against the back pressure. Because of the screw geometry, the circumferential pressure field around the screws is not balanced, resulting in net dynamic and static pressures applied on the rotors. The research work presented here aims at building and verifying a model to predict both: (1) the exciting lateral hydrodynamic forces produced by the unbalanced pressure field, and (2) the rotor response due to those forces. The model rests on the screw pump hydraulic models for predicting the pressure in the screw chambers as a function of the discharge pressure. These models are extended to predict the steady state dynamic pressure field as a function of the rotational angle of the rotor. The dynamic force resulting from the dynamic pressure field is calculated and applied to the rotor as a set of super-synchronous periodic forces. The structural model of the screw, although nonsymmetrical, was found to be accurately represented by an axisymmetric equivalent structure. The rotor response to the dynamic super-synchronous forces is calculated to predict the pump rotordynamic behavior.
The work in this dissertation presents: (1) the axisymmetric structural model of the rotors (2) the proposed dynamic pressure model, (3) the screw pump rotor response, (4) the experimental validation of the dynamic pressure model and rotor response.
The topic of twin-screw pump rotordynamics is absent from the literature. The original contribution of the work presented in this dissertation to the field of rotordynamics includes: (1) demonstrating the adequacy of an axisymmetric model for modeling the screw section, (2) developing a model for predicting the dynamic pressure field around the screws, (3) characterization of the dynamic forces (synchronous and its harmonics) applied at the screw pump rotors, (4) predicting the dynamic response of twin-screw pump rotors due to hydrodynamic forces, (5) measuring the axial dynamic pressure in two circumferential planes around the screws to verify pressure predictions, (6) measuring the dynamic response of twin-screw pump rotor.
|
27 |
Dynamic Modelling, Measurement and Control of Co-rotating Twin-Screw ExtrudersElsey, Justin Rae January 2003 (has links)
Co-rotating twin-screw extruders are unique and versatile machines that are used widely in the plastics and food processing industries. Due to the large number of operating variables and design parameters available for manipulation and the complex interactions between them, it cannot be claimed that these extruders are currently being optimally utilised. The most significant improvement to the field of twin-screw extrusion would be through the provision of a generally applicable dynamic process model that is both computationally inexpensive and accurate. This would enable product design, process optimisation and process controller design to be performed cheaply and more thoroughly on a computer than can currently be achieved through experimental trials. This thesis is divided into three parts: dynamic modelling, measurement and control. The first part outlines the development of a dynamic model of the extrusion process which satisfies the above mentioned criteria. The dynamic model predicts quasi-3D spatial profiles of the degree of fill, pressure, temperature, specific mechanical energy input and concentrations of inert and reacting species in the extruder. The individual material transport models which constitute the dynamic model are examined closely for their accuracy and computational efficiency by comparing candidate models amongst themselves and against full 3D finite volume flow models. Several new modelling approaches are proposed in the course of this investigation. The dynamic model achieves a high degree of simplicity and flexibility by assuming a slight compressibility in the process material, allowing the pressure to be calculated directly from the degree of over-fill in each model element using an equation of state. Comparison of the model predictions with dynamic temperature, pressure and residence time distribution data from an extrusion cooking process indicates a good predictive capability. The model can perform dynamic step-change calculations for typical screw configurations in approximately 30 seconds on a 600 MHz Pentium 3 personal computer. The second part of this thesis relates to the measurement of product quality attributes of extruded materials. A digital image processing technique for measuring the bubble size distribution in extruded foams from cross sectional images is presented. It is recognised that this is an important product quality attribute, though difficult to measure accurately with existing techniques. The present technique is demonstrated on several different products. A simulation study of the formation mechanism of polymer foams is also performed. The measurement of product quality attributes such as bulk density and hardness in a manner suitable for automatic control is also addressed. This is achieved through the development of an acoustic sensor for inferring product attributes using the sounds emanating from the product as it leaves the extruder. This method is found to have good prediction ability on unseen data. The third and final part of this thesis relates to the automatic control of product quality attributes using multivariable model predictive controllers based on both direct and indirect control strategies. In the given case study, indirect control strategies, which seek to regulate the product quality attributes through the control of secondary process indicators such as temperature and pressure, are found to cause greater deviations in product quality than taking no corrective control action at all. Conversely, direct control strategies are shown to give tight control over the product quality attributes, provided that appropriate product quality sensors or inferential estimation techniques are available.
|
28 |
Modeling Flow, Melting, Solid Conveying and Global Behavior in Intermeshing Counter-Rotating Twin Screw ExtrudersJiang, Qibo 26 August 2008 (has links)
No description available.
|
29 |
Understanding Scalability In A Twin Screw Wet GranulationShi, Zequn January 2022 (has links)
Continuous wet granulation using a twin-screw extruder has attracted considerable attentions in pharmaceutical industry as it ensures consistent tablet quality at a high production rate. However, challenge still exists in controlling desired granule properties especially when different sized twin-screw granulators are used. This study therefore explored the potential of scalability of two sized twin-screw extruders and the how raw materials affect granules properties in two twin-screw extruders. The first study focuses on aspects of scaling using two twin-screw extruders, 18mm and 27mm. Dimensionless groups including Fr Number, Powder Feed Number and Degree of Fill (<30%) were studied to observe their influences on granule attributes. It was found that these dimensionless groups demonstrated inconsistent effects on granule properties and the effect of Powder Feed Number was highly dependent on Degree of Fill. Different extruder still exerts significant impact on granule properties. A scaling rule was established for median granule size (d50) only, but only moderate degree of fit was found. Although a considerable number of studies have been published on controlled-release and extended-release excipients, little attentions have been given to the influence of microcrystalline cellulose (MCC) grades in twin-screw wet granulation. The second study therefore investigated the processability of five grades MCC from the Avicel® PH family using two twin-screw extruders again, 18mm and 27mm. Granule attributes including particle size, density, moisture, and strength were tested and it was found that MCC inherent density has the most significant impact on granule properties while particle size of MCC has minor positive effect on granule size. This study also concluded that better granule flowability and uniformity can be achieved by using low moisture, larger particle size and high density MCC as excipients. / Thesis / Master of Applied Science (MASc)
|
30 |
MODELLING OF COUNTER ROTATING TWIN SCREW EXTRUSIONGoger, Ali 10 1900 (has links)
<p>Intermeshing counter-rotating twin screw extruders (ICRTSE) are used extensively in the polymer processing industry for pelletizing, devolatilization and extrusion of various plastic products. ICRTSE have better positive displacement ability and are more suitable for shear sensitive materials compared to other types of twin screw extruders.</p> <p>The objectives of this thesis are to understand the flow mechanism and the effects of screw geometries and processing conditions in the ICRTSE. First, a simple flow model based on a volume of the conveying element of ICRTSE was used to calculate flow rate. Since ICRTSE do not give complete positive displacement, the various leakage flows were identified and taken into account in the simple flow model. Although the simple flow model provided reasonable results in terms of flow rate, computer simulations were found necessary due to the limitations of simple flow model. Second, a 3D computer simulation of ICRTSE was developed for various screw geometries and processing conditions. Both Newtonian and non-Newtonian fluids were examined.</p> <p>It was shown the simple model based on geometrical parameters for pumping behaviour give reasonable prediction of flow rate. It was found that determination of negative pressure should be taken into account in numerical simulations. The pumping efficiency is influenced positively by the ratio of flight width-to-channel width but it is affected negatively by the screw pitch length. It is negligibly changed with screw speed. Finally, the dominant flow is shear flow in ICRTSE and therefore, dispersive mixing capacity is very limited due to a lack of elongational effects.</p> / Master of Applied Science (MASc)
|
Page generated in 0.0567 seconds