• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 22
  • 10
  • 5
  • 2
  • 1
  • Tagged with
  • 96
  • 96
  • 48
  • 35
  • 20
  • 20
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent

Crawford, Deborah E., Casaban, J., Haydon, R., Giri, N., McNally, T., James, S.L. 31 January 2020 (has links)
Yes / Grinding solid reagents under solvent-free or low-solvent conditions (mechanochemistry) is emerging as a general synthetic technique which is an alternative to conventional solvent-intensive methods. However, it is essential to find ways to scale-up this type of synthesis if its promise of cleaner manufacturing is to be realised. Here, we demonstrate the use of twin screw and single screw extruders for the continuous synthesis of various metal complexes, including Ni(salen), Ni(NCS)2(PPh3)2 as well as the commercially important metal organic frameworks (MOFs) Cu3(BTC)2 (HKUST-1), Zn(2-methylimidazolate)2 (ZIF-8, MAF-4) and Al(fumarate)(OH). Notably, Al(fumarate)(OH) has not previously been synthesised mechanochemically. Quantitative conversions occur to give products at kg h−1 rates which, after activation, exhibit surface areas and pore volumes equivalent to those of materials produced by conventional solvent-based methods. Some reactions can be performed either under completely solvent-free conditions whereas others require the addition of small amounts of solvent (typically 3–4 mol equivalents). Continuous neat melt phase synthesis is also successfully demonstrated by both twin screw and single screw extrusion for ZIF-8. The latter technique provided ZIF-8 at 4 kg h−1. The space time yields (STYs) for these methods of up to 144 × 103 kg per m3 per day are orders of magnitude greater than STYs for other methods of making MOFs. Extrusion methods clearly enable scaling of mechanochemical and melt phase synthesis under solvent-free or low-solvent conditions, and may also be applied in synthesis more generally. / EPSRC (EP/L019655/1)
32

Translating solid state organic synthesis from a mixer mill to a continuous twin screw extruder

Cao, Q., Howard, J.L., Crawford, Deborah E., James, S.L., Browne, D.L. 13 February 2020 (has links)
Yes / A study on the translation of a solid-state synthetic reaction from a mechanochemical mixer-mill to a continuous twin-screw extruder is discussed herein. The study highlights some considerations to be made and parameters to be tested in the context of a model fluorination reaction, which is the first organic fluorination to be attempted using extrusion. Upon optimization, which features the first use of grinding auxiliary solids to enable effective synthetic extrusion, the difluorination reaction was successfully translated to the extruder, leading to a 100-fold improvement in Space Time Yield (STY); 29 kg m−3 day−1 in a mixer mill to 3395 kg m−3 day−1 in a twin screw extruder. / D. L. B is grateful to the EPSRC for a First Grant (D. L. B. EP/P002951/1), CRD for a studentship award to J. L. H., Queen’s University Belfast for a Visiting Research Fellowship and the School of Chemistry at Cardiff University for generous support. S. L. J. is grateful to EPSRC for support (EP/L019655/1).
33

Continuous multi-step synthesis by extrusion - telescoping solvent-free reactions for greater efficiency

Crawford, Deborah E., Miskimmin, C.K., Cahir, J., James, S.L. 13 February 2020 (has links)
Yes / Chemical manufacturing typically requires more than one step, involving multiple batch processes, which makes synthesis at scale laborious and wasteful. Herein, we demonstrate that several reactions can be telescoped into a single continuous process and/or be carried out as a continuous multi-component reaction (MCR), by twin screw extrusion (TSE), in the complete absence of solvent. / EPSRC (EP/L019655/1).
34

Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusion

Crawford, Deborah E., Wright, L.A., James, S.L., Abbott, A.P. 13 February 2020 (has links)
No / Mechanochemical synthesis has been applied to the rapid synthesis of Deep Eutectic Solvents (DESs), including Reline 200 (choline chloride : urea, 1 : 2), in a continuous flow methodology by Twin Screw Extrusion (TSE). This gave products in higher purity and with Space Time Yields (STYs), four orders of magnitude greater than for batch methods
35

Papain-catalysed mechanochemical synthesis of oligopeptides by milling and twin-screw extrusion: application in the Juliá-Colonna enantioselective epoxidation

Ardila-Fierro, K., Crawford, Deborah E., Körner, A., James, S.L., Bolm, C., Hernández, J.G. 03 March 2020 (has links)
No / The oligomerisation of L-amino acids by papain was studied in a mixer ball mill and in a planetary ball mill. The biocatalyst proved stable under the ball milling conditions providing the corresponding oligopeptides in good to excellent yields and with a variable degree of polymerisation. Both parameters were found to be dependent on the reaction conditions and on the nature of the amino acid (specifically on its side-chain size and hydrophobicity). In addition, the chemoenzymatic oligomerisation was demonstrated by utilising twin-screw extrusion technology, which allowed for a scalable continuous process. Finally, the synthesised oligo(L-Leu) 2b proved to be active as a catalyst in the Juliá–Colonna enantioselective epoxidation of chalcone derivatives. / We acknowledge RWTH Aachen University for support by the Distinguished Professorship Program funded by the Excellence Initiative of the German federal and state governments. We kindly acknowledge Marcus Frings and Plamena Staleva for the HPLC analysis of products 4a–c (RWTH Aachen University) and ASEP for the TGA analysis (Queen’s University Belfast). D. E. C. and S. L. J. acknowledge the agency EPSRC, grant no. EP/R019655/1. Part of this work was performed at the Center for Chemical Polymer Technology (CPT) unit of DWI, which was supported by the EU and the federal state of North Rhine-Westphalia (grant EFRE 30 00 883 02).
36

Continuous and scalable synthesis of a porous organic cage by twin screw extrusion (TSE)

Egleston, B.D., Brand, M.C., Greenwell, F., Briggs, M.E., James, S.L., Cooper, A.I., Crawford, Deborah E., Greenaway, R.L. 25 May 2020 (has links)
Yes / The continuous and scalable synthesis of a porous organic cage (CC3), obtained through a 10-component imine polycondensation between triformylbenzene and a vicinal diamine, was achieved using twin screw extrusion (TSE). Compared to both batch and flow syntheses, the use of TSE enabled the large scale synthesis of CC3 using minimal solvent and in short reaction times, with liquid-assisted grinding (LAG) also promoting window-to-window crystal packing to form a 3-D diamondoid pore network in the solid state. A new kinetically trapped [3+5] product was also observed alongside the formation of the targeted [4+6] cage species. Post-synthetic purification by Soxhlet extraction of the as-extruded ‘technical grade’ mixture of CC3 and [3+5] species rendered the material porous. / Engineering and Physical Sciences Research Council (EPSRC) under the Grants EP/R005710/1 (AIC) and EP/R005540/1 (SLJ), and for an EPSRC Summer Vacation Bursary at the University of Liverpool (FG, RLG). We also thank the European Research Council under FP7, RobOT, ERC Grant Agreement No. 321156 (AIC), for financial support. RLG thanks the Royal Society for a University Research Fellowship.
37

MODELLING OF COUNTER ROTATING TWIN SCREW EXTRUSION

Goger, Ali 10 1900 (has links)
<p>Intermeshing counter-rotating twin screw extruders (ICRTSE) are used extensively in the polymer processing industry for pelletizing, devolatilization and extrusion of various plastic products. ICRTSE have better positive displacement ability and are more suitable for shear sensitive materials compared to other types of twin screw extruders.</p> <p>The objectives of this thesis are to understand the flow mechanism and the effects of screw geometries and processing conditions in the ICRTSE. First, a simple flow model based on a volume of the conveying element of ICRTSE was used to calculate flow rate. Since ICRTSE do not give complete positive displacement, the various leakage flows were identified and taken into account in the simple flow model. Although the simple flow model provided reasonable results in terms of flow rate, computer simulations were found necessary due to the limitations of simple flow model. Second, a 3D computer simulation of ICRTSE was developed for various screw geometries and processing conditions. Both Newtonian and non-Newtonian fluids were examined.</p> <p>It was shown the simple model based on geometrical parameters for pumping behaviour give reasonable prediction of flow rate. It was found that determination of negative pressure should be taken into account in numerical simulations. The pumping efficiency is influenced positively by the ratio of flight width-to-channel width but it is affected negatively by the screw pitch length. It is negligibly changed with screw speed. Finally, the dominant flow is shear flow in ICRTSE and therefore, dispersive mixing capacity is very limited due to a lack of elongational effects.</p> / Master of Applied Science (MASc)
38

Twin-Screw Extrusion for the Production of Lipid Complexed Pea Starch as a Functional Food Ingredient / Twin-Screw Extrusion for a Functional Food Ingredient

Ciardullo, Sarah Kristi January 2018 (has links)
Canada is a major global producer of pulse products including pulse starch, which notably contributes to a healthy diet. Strategically, Canada is taking steps to research methods of adding greater value to these crop products, and functional foods like resistant starch are particularly interesting. The primary objectives of this study were to develop an effective reactive extrusion process to produce gelatinized lipid complexed pea starches with enhanced enzyme resistance and examine the effects of bulk lipid complexing conditions on physicochemical and functional properties of extruded pea starches. One type of commercially available pea starch, Nutri-Pea, was chosen as the research subject in this study. A number of methods including; Englyst digestion method, differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), contact angle, titrations, residence time distribution (RTD) and rapid visco analysis (RVA) were used to characterize the properties of extruded pea starches. The effects of feed formulation and extrusion conditions on lipid complexing and Englyst digestion profiles were systematically examined on two mixing devices. An extensive kinetics study was conducted on a lab scale twin-screw compounder, DSM-Xplore. The process was then scaled up to produce bulk lipid complexed pea starch on a Leistritz twin-screw extruder. The results showed that lipid complexing and digestion profiles were highly dependent on feed moisture and induced screw shear. Reactive extrusion of pea starches under optimized conditions achieved a significant but moderate increase in either resistant starch (RS) content (from 13.3% to 20.2%) or slowly digestible starch (SDS) content (from 7.85% to 23.3%) compared to their native counterparts. However, RS and SDS content could not be improved simultaneously based on the pea starch and extrusion process in this study. Increased degree of substitution (DS) was found for myristic acid complexed pea starches (nominal DS= ~0.8) when compared to palmitic acid complexed pea starch (nominal DS= ~0.5). Contact angle measurements, FTIR and DSC thermograms confirmed the presence of lipids. Lipid complexed starch films showed increasing hydrophobicity with increasing lipid content. As an alternative product compared to functional foods, the modified starch was considered as a biodegradable film for industrial applications. The material was produced at the highest moisture content for extruded native starch and two concentrations of lipid complexed starch using an intensive screw design. Preliminary results show that increasing lipid content and adding 1% glycerol to samples decreases the force per film thickness required to puncture films. However further investigation is required to determine effect of heat and moisture deformation. / Thesis / Master of Applied Science (MASc) / Incorporation of pulses into food products has been a major area of Canadian research for its potential to create new avenues of enzyme resistant food starches. Extrusion cooking is commonly used in industry for producing various food products such as snacks and cereals but little research has been reported on using an extruder to rapidly produce resistant pulse starches as a functional ingredient on a large scale; resistant starch is a functional food beneficial to humans in the same manner as insoluble fiber but exhibits improved textural properties. This study aimed to develop an effective reactive extrusion process to produce lipid complexed pea starches with enhanced enzyme resistance (i.e. increased slowly digestible starch (SDS) and resistant starch (RS) content) by an examination of the effects of reaction conditions on the properties of extrusion products. The lipid complexed pea starches under optimized conditions achieved a significant but moderate increase in either RS content or SDS content depending on the sample formulation compared to their native counterparts. However, RS and SDS content could not simultaneously be improved in this study.
39

In-process rheometry as a PAT tool for hot melt extrusion

Kelly, Adrian L., Gough, Timothy D., Isreb, Mohammad, Dhumal, Ravindra S., Jones, J.W., Nicholson, S., Dennis, A.B., Paradkar, Anant R 22 November 2017 (has links)
Yes / Real time measurement of melt rheology has been investigated as a Process Analytical Technology (PAT) to monitor hot melt extrusion of an Active Pharmaceutical Ingredient (API) in a polymer matrix. A developmental API was melt mixed with a commercial copolymer using a heated twin screw extruder at different API loadings and set temperatures. The extruder was equipped with an instrumented rheological slit die which incorporated three pressure transducers flush mounted to the die surface. Pressure drop measurements within the die at a range of extrusion throughputs were used to calculate rheological parameters such as shear viscosity and exit pressure, related to shear and elastic melt flow properties respectively. Results showed that the melt exhibited shear thinning behavior whereby viscosity decreased with increasing flow rate. Increase in drug loading and set extrusion temperature resulted in a reduction in melt viscosity. Shear viscosity and exit pressure measurements were found to be sensitive to API loading. These findings suggest that this technique could be used as a simple tool to measure material attributes in-line, to build better overall process understanding for hot melt extrusion.
40

A novel laboratory dispersive and distributive minimixer and applications : development of a new minimixer that can duplicate mixing which occurs in a large twin screw extruder

Butterfield, Craig January 2009 (has links)
The mixing of additives into a plastic is an extremely important step in the plastics industry, necessary for the manufacture of almost every conceivable product. Therefore the costs in developing new products can prove very expensive as the testing is usually carried out using full scale machines, usually using twin screw extruders because they are able to provide good dispersive and distributive mixing. This is particularly important when compounding difficult to disperse additives and nano-additives. What is required is a machine that can replicate the mixing abilities of a twin-screw extruder but on a laboratory scale. There have been attempts by industry to develop smaller machines, such as the Thermo Scientific HAAKE Minilab II Micro Compounder which processes on the scale of 7 cm3 of material volume. This can be too small for some needs and therefore a machine is required to produce material on the 10g to 100g scale. To this end a laboratory mixer of novel design was devised and its mixing performance was assessed using conductive carbon black and compared against the Thermo Scientific HAAKE Minilab II Micro Compounder, a 19 mm co-rotating twin-screw extruder and a 40 mm co-rotating twin-screw extruder. Carbon black was used because mixing performance can be assessed by measuring the minimum carbon loading necessary to induce electrical conductivity. It was found that the minimixer was able to induce electrical conductivity at loading of 5.75% but the comparison with the other machines proved difficult as the achievement of the threshold at which semi-conductivity occurred appeared independent of shear rate and mixing duration.

Page generated in 0.0207 seconds