Spelling suggestions: "subject:"codimensional chromatography"" "subject:"biodimensional chromatography""
1 |
Investigations into Background Correction and Retention Time Alignment to Enhance Quantitative Chemometric Analysis of Comprehensive Two-Dimensional Liquid Chromatography-Diode Array Detection DataAllen, Robert 20 November 2012 (has links)
The focus of the projects presented here was to develop possible solutions to three issues commonly encountered during chemometric analysis of comprehensive two-dimensional liquid chromatography diode array detector (LCxLC-DAD) data. The focus of the first project was to determine a means of performing background correction that removed two background ridges. The methods of simply subtracting out a mean blank sample, singular value decomposition based background correction (SVD-BC) and asymmetrically weighted least squares (AWLS) were compared. AWLS was found to be the only background correction technique to fully remove the ridges. However, AWLS was also found to attenuate the peak intensity by approximately 25% due to over fitting of the background at the lower wavelengths. The focus of the second project was the investigation of five common interpolation strategies for the reconstruction of the sampled first dimension peak. The interpolation strategy that best reproduced the original first dimension retention time was Gaussian fitting. This was expected given that the simulated data set was generated using a Gaussian model for the peak shape. An algorithm, semi-automated alignment method (SAAM), was then developed that allowed for each peak to be aligned independently of the other peaks in the data set. SAAM was validated using both simulated and experimental data. The simulated results indicated that SAAM produced percent recoveries close to 100%. SAAM was also compared to iterative key set factor analysis-alternating least squares (IKSFA-ALS) for the analysis of phenytoin in a waste water treatment plant effluent. SAAM produced a concentration of 26±3 ppb compared to 39±9 ppb from IKSFA-ALS. While these results are very different, the result produced by SAAM is still within the experimental error of the reference 2D-LC/MS/MS method, 42±19. Finally, SAAM was compared to two existing literature methods. A mixture of simulated and experimental data sets was used to measure the accuracy and precision of the results. SAAM was found to be impacted less by intra- and inter-sample retention time shifting then PARAFAC2. SAAM and shifted candecomp/PARAFAC were found to produce very similar results. However, SAAM was found to experience some difficulty producing accurate and precise results with some of the experimental data sets.
|
2 |
Novel multidimensional fractionation techniques for the compositional analysis of impact polypropylene copolymersCheruthazhekatt, Sadiqali 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Impact Polypropylene Copolymers (IPCs) are extremely complex materials, consisting of a mixture of
polypropylene homopolymer and copolymers having different comonomer (ethylene) contents and
chemical composition distributions. IPC can only be effectively analysed by multidimensional
analytical approaches. For this, initially, the individual components have to be separated according to
any of their molecular characteristics, either by chemical composition distribution (CCD) or molar
mass distribution (MMD), followed by further analysis of these separated fractions with conventional
analytical techniques. The combination of preparative temperature rising elution fractionation (TREF)
with several other analytical techniques have been reported for the thorough characterization of this
material. However, even the combinations of these methods were of limited value due to the complex
nature of this polymer. Therefore, novel analytical approaches are needed for a more detailed
compositional analysis of IPCs.
This work describes a number of multidimensional analytical techniques that are based on the
combination of fractionation and hyphenated techniques. Firstly, preparative TREF was combined
with high temperature size exclusion chromatography-FTIR (HT SEC-FTIR), HT SEC-HPer DSC
(High Performance Differential Scanning Calorimetry) and high temperature two-dimensional liquid
chromatography (HT 2D-LC) for the comprehensive analysis of a typical impact polypropylene
copolymer and one of its midelution temperature TREF fractions. HT SEC-FTIR analysis provided
information regarding the chemical composition and crystallinity as a function of molar mass. Thermal
analysis of selected SEC fractions using a novel DSC method - High Speed or High Performance
Differential Scanning Calorimetry (HPer DSC) - that allows measuring of minute amounts of material
down to micrograms, yielded the melting and crystallization behaviour of these fractions which is
related to the chemical heterogeneity of this complex copolymer. High temperature 2D-LC analysis
provided the complete separation of this TREF fraction according to the chemical composition of each
component along with its molar mass distribution. In a second step, the compositional characterization by advanced thermal analysis (HPer DSC, Flash DSC 1, and solution DSC) of the
TREF-SEC fractions was extended to all semi-crystalline and higher temperature TREF fractions. By
applying HPer DSC at scan rates of 5−200°C/min and Flash DSC 1 at scan rates of 10−1000°C/s,
the metastability of one of the fractions was studied in detail. DSC measurements of TREF-SEC
cross-fractions at high scan rates in p-xylene successfully connected reversely to the slow scan rate
in TREF elution, if corrected for recrystallization. Finally, the exact chemical structure of all HT HPLC
separated components was determined by coupling of HT HPLC with FTIR spectroscopy via an LCTransform
interface. This novel approach revealed the capability of this hyphenated technique to
determine the exact chemical composition of the individual components in the complex TREF
fractions of IPCs. The HT HPLC–FTIR results confirmed the separation mechanism in HPLC using a
solvent gradient of 1-decanol/TCB and a graphitic stationary phase at 160°C. FTIR analysis provided
information on the ethylene and propylene contents of the fractions as well as on the ethylene and
propylene crystallinities. / AFRIKAANSE OPSOMMING: Impak Polipropileen Kopolimere (IPKe) is uiters komplekse materiale, bestaande uit 'n mengsel van
polipropileen homopolimeer en kopolimere met verskillende komonomeer (etileen) inhoud en
chemiese samestelling verspreiding. IPKe kan slegs doeltreffend ontleed word deur multidimensionele
analitiese benaderings te volg. Hiervoor moet die individuele komponente aanvanklik
eers geskei word volgens enige van hul molekulêre eienskappe, hetsy deur die chemiese
samestelling verspreiding (CSV) of molêre massa verspreiding (MMV), gevolg deur 'n verdere
ontleding van hierdie geskeide fraksies met konvensionele analitiese tegnieke. Die kombinasie van
voorbereidings temperatuur-verhogings eluasie fraksionering (TVEF) met verskeie ander analitiese
tegnieke is gerapporteer vir die deeglike karakterisering van hierdie materiaal. Maar selfs die
kombinasies van hierdie metodes was van beperkte waarde as gevolg van die komplekse aard van
hierdie polimeer. Daarom word nuwe analitiese benaderings benodig vir 'n meer gedetailleerde
komposisionele ontleding van IPKe.
Hierdie studie beskryf 'n aantal multidimensionele analitiese tegnieke wat gebaseer is op die
kombinasie van fraksionering en gekoppelde tegnieke. Eerstens is voorbereidings TVEF gekombineer
met hoë temperatuur grootte-uitsluitingschromatografie-FTIR (HT GUC-FTIR), HT GUC-HPer DSK en
hoë temperatuur twee-dimensionele vloeistof chromatografie (HT 2D-VC) vir die omvattende
ontleding van 'n tipiese impak polipropileen kopolimeer en een van sy mid-eluasie temperatuur TVEF
fraksies. HT GUC-FTIR analiese het inligting verskaf met betrekking tot die chemiese samestelling en
kristalliniteit as 'n funksie van molêre massa. Termiese analiese van geselekteerde GUC fraksies deur
gebruik te maak van 'n nuwe-DSK metode - Hoë Spoed of Hoë Prestasie Differensïele skandeer
kalorimetrie (HPer DSK) - wat die meting van klein hoeveelhede materiaal tot by mikrogram
hoeveelhede toelaat, het die smelt en kristallisasie gedrag van hierdie fraksies bepaal wat verwant is
aan die chemiese heterogeniteit van hierdie komplekse kopolimeer. Hoë temperatuur 2D-LC analiese
het die volledige skeiding van hierdie TVEF fraksie volgens die chemiese samestelling van elke
komponent saam met die molêre massa verspreiding moontlik gemaak. In 'n tweede stap, is die komposisionele karakterisering deur gevorderde termiese analiese (HPer DSK, Flash DSK 1 en
oplossing DSK) van die TVEF-GUC fraksies uitgebrei na alle semi-kristallyne en hoër temperatuur
TVEF fraksies. Deur die gebruik van HPer DSK, teen ’n skandeerspoed van 5-200°C / min, en Flash
DSK 1, teen ’n skandeerspoed van 10-1000°C / s, is die meta-stabiliteit van een van die fraksies in
detail bestudeer. DSK metings van TVEF-GUC kruis-fraksies by 'n hoë skandeeerspoed in p-xyleen
het suksesvol omgekeerd verbind aan die stadige skandeerspoed in TVEF eluasie, wanneer
gekorrigeer vir dekristallisatie. Ten slotte is die presiese chemiese struktuur van al die HT HPVC
geskeide komponente bepaal deur die koppeling van HT HPVC met FTIR spektroskopie deur middel
van 'n LC-transform-koppelvlak. Hierdie nuwe benadering het die vermoë van die gekoppelde tegniek
om die presiese chemiese samestelling van die individuele komponente in die komplekse TVEF
fraksies of IPKe te bepaal aan die lig gebring. Die HT HPVC-FTIR resultate het die
skeidingsmeganisme in HPVC bevestig deur die gebruik van ’n oplosmiddelgradiënt van 1-dekanol/TCB en 'n graphitiese stasionêre fase by 160°C. FTIR analiese verskaf inligting in verband
met die etileen en propileen inhoud van die fraksies sowel as die etileen en propileen krystalliniteit.
|
3 |
Développement de méthodes bidimensionnelles préparatives CPCxLC : application à la purification de molécules d'intérêt issues de matrices végétales / Development of two-dimensional preparative CPCxLC methods : application to the isolation of targeted compounds from natural productsMarlot, Léa 13 December 2018 (has links)
La chromatographie bidimensionnelle préparative suscite de plus en plus d'intérêt dans l'élucidation d'échantillons complexes car elle permet de collecter un grand nombre de molécules à haute pureté et quantitée récupérée. Bien que la chromatographie liquide (LC) soit souvent choisie en deuxième dimension, la chromatographie de partage centrifuge (CPC) à de multiples avantages qui en font une technique de choix pour la première dimension. Dans le but de purifier plusieurs molécules d’intérêt dans les matrices végétales, le couplage «comprehensive» CPCxLC représente une technique à fort potentiel. Après avoir expliqué son intérêt et les enjeux liés à la séparation préparative en mode «comprehensive», le développement d’une telle séparation est étudiée selon trois axes. Tout d’abord, une purification de deux molécules d’intérêt dans la plante Edelweiss est réalisée à l’échelle industrielle grâce à la réalisation de cartographies 2D au laboratoire. Cette application permet de montrer l’intérêt du couplage et de mettre en évidence les verrous liés aux conditions de transfert total des fractions en deuxième dimension. Dans une deuxième partie, la séparation CPCxLC en mode « comprehensive » est développée avec le transfert total de l’échantillon en deuxième dimension pour la purification de cinq composés cibles présents dans la plante Edelweiss. Les points clés de la séparation CPCxLC, à savoir le temps d’échantillonnage et le transfert en deuxième dimension, sont étudiés au regard du couplage LCxLC afin de garantir une qualité de séparation permettant la récupération totale des composés. Enfin, la troisième partie consiste à la mise en place d’une méthodologie de sélection des systèmes CPCxLC basée sur l’évaluation quantitative du potentiel des systèmes bidimensionnels à apporter de la distance entre les pics. Cette procédure de sélection est développée sur l’échantillon Cyclopia genistoides avec l’objectif d’isoler huit composés cibles / Preparative two-dimensional chromatography is gaining interest in the elucidation of complex samples as it allows the collection of a large number of molecules with high recovered purity and quantity. While the second dimension is often selected to be liquid chromatography (LC), centrifugal partition chromatography (CPC) is a technique with multiple advantages representing a suitable first dimension. In order to purify several molecules of interest in plant matrices, the comprehensive CPCxLC represents a technique with high potential. After explaining its interest and the issues related to the preparative separation in comprehensive mode, the development of such a separation is studied according to three axes. Firstly, a purification of two targeted molecules in Edelweiss plant is carried out at industrial scale thanks to the realization of 2D-contour plot. This application allows to expose the interest of the separation and to highlight the locks related to the conditions of total transfer of the fractions in second dimension. In a second part, the comprehensive CPCxLC separation is developed with the total transfer of the sample in second dimension applied to the purification of five target compounds from Edelweiss plant. The key points of the CPCxLC separation, namely the sampling time and the second dimension transfer, are studied with regard to the LCxLC separation in order to ensure a separation quality allowing the total recovery of the compounds. Finally, the third part consists in the implementation of a CPCxLC system selection methodology based on the quantitative evaluation of the potential of two-dimensional systems to generate distance between peaks. This selection procedure is developed on the sample Cyclopia genistoides with the objective of isolating eight target compounds
|
Page generated in 0.1196 seconds