Spelling suggestions: "subject:"boostphase flow - mathematical models"" "subject:"dephase flow - mathematical models""
11 |
Intégration et validation expérimentale de la méthode VOF dans les calculs aérodynamiques automobiles: application au cas de l'entrainement d'eau dans les circuits de climatisation / Integration and experimentale validation of the VOF method in automotive aerodynamics computations: application to water entrainment into the HVAC system.Berger, Rémi 26 October 2010 (has links)
Cette étude porte sur l'utilisation conjointe (appelée ” couplage ”) de modèle de turbulence à grandes échelles LES (Large Eddy Simulation) et du modèle multiphasique VOF (Volume of Fluid). Cette utilisation conjointe est nécessaire dans de nombreuses applications industrielles comme celles de l'automobile où l'on recherche par exemple à évaluer les prestations diphasiques de l'auvent liées au phénomène d'entraînement et d'ingestion d'une nappe d'eau par le HVAC (système d'air conditionné). Cependant, l'utilisation conjointe de ces méthodes nécessite un traitement particulier de la turbulence proche de la surface liquide afin de reproduire convenablement la quantité de mouvement transmise depuis la phase gazeuse, motrice, jusque dans la phase liquide.<p><p>Basée sur une approche numérique et expérimentale, notre étude est articulée autour de trois axes. Tout d'abord, le développement de techniques de mesures spécifiques pour l'étude expérimentale de notre problématique: le LeDaR pour mesurer les déformées d'une interface et la PIV d'interface afin d'accéder aux champs de vitesse et de turbulence dans chacune des deux phases. Le second axe est la constitution d'une base de données expérimentales sur une configuration de type jet impactant sur une surface liquide représentative des phénomènes rencontrés dans l'auvent. Enfin, le troisième axe de travail est l'évaluation des modèles existants dans le code Ansys Fluent et à partir de cette analyse le développement et la validation de modèles de couplage LES-VOF.<p><p>L'évaluation des modèles développés a permis de valider une stratégie de calcul adaptée aux simulations de l'entraînement d'une surface d'eau par un écoulement d'air turbulent. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
12 |
A performance model for a helically coiled once-through steam generator tubeBayless, Paul David January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1979. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Includes bibliographical references. / by Paul David Bayless. / M.S.
|
13 |
Modeling in-situ vapor extraction during flow boiling in microscale channelSalakij, Saran 25 March 2014 (has links)
In-situ vapor extraction is performed by applying a pressure differential across a hydrophobic porous membrane that forms a wall of the channel as a means of reducing the local quality of flow boiling within the channel. As the local quality is reduced, the heat transfer capability can be improve while large pressure drops and flow instability can be mitigated. The present study investigates the potential of vapor extraction, by examining the characteristics and mechanisms of extraction. The physics based models for transition among extraction regimes are developed which can be used as a basis for a regime-based vapor extraction rate model. The effects of vapor extraction on flow boiling in a microscale fractal-like branching network and diverging channels are studied by using a one-dimensional numerical model based on conservation of mass and energy, along with heat transfer and pressure drop correlations. The results show the improvement in reduced pressure drop and enhanced flow stability, and show the potential of heat transfer enhancement. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from March 25, 2013 - March 25, 2014
|
14 |
Modelagem dinâmica de separador bifásico com alimentação por escoamento em regime de golfadas / Dynamic modeling of two-phase separator with feeding for draining in regimen of slugRosilene Abreu Portella 07 August 2008 (has links)
Petróleo Brasileiro S.A. / O presente trabalho aborda o comportamento da planta de processamento primário com alimentação por fluxo em padrão de golfadas. O fluxo no sistema de tubulações é descrito por um
modelo de parâmetros concentrados, fornecendo as características principais necessárias para o controle da planta, e a resposta dinâmica desta pode então ser analisada. Usando a estratégia de controle tradicional verifica-se que as oscilações de fluxo são transmitidas para as vazões de saída de líquido e gás, para obter uma vazão de saída mais estável é permitida a flutuação de carga no separador dentro de uma tolerância, isto é possível reduzindo a atuação do controlador e estabelecendo um controle adicional diretamente na válvula de entrada. / The present work addresses the behavior of a primary processing plant subjected to slug flow pattern at its entrance. The flow in a pipeline system is described by a simplified concentrated
parameter model, which preserves the main physical features that are important to control the plant. The dynamic response of the plant is then analyzed. Using a standard control strategy for
the gas liquid separator, it is seen that the flow oscillations are transmitted to the liquid and gas outlets. In order to obtain a more stable outlet flow, the liquid level in the separator is then
allowed to fluctuate within a given range, by reducing the effect of the controller constants, and establishing an additional control directly on the inlet entrance valve.
|
15 |
Modelagem dinâmica de separador bifásico com alimentação por escoamento em regime de golfadas / Dynamic modeling of two-phase separator with feeding for draining in regimen of slugRosilene Abreu Portella 07 August 2008 (has links)
Petróleo Brasileiro S.A. / O presente trabalho aborda o comportamento da planta de processamento primário com alimentação por fluxo em padrão de golfadas. O fluxo no sistema de tubulações é descrito por um
modelo de parâmetros concentrados, fornecendo as características principais necessárias para o controle da planta, e a resposta dinâmica desta pode então ser analisada. Usando a estratégia de controle tradicional verifica-se que as oscilações de fluxo são transmitidas para as vazões de saída de líquido e gás, para obter uma vazão de saída mais estável é permitida a flutuação de carga no separador dentro de uma tolerância, isto é possível reduzindo a atuação do controlador e estabelecendo um controle adicional diretamente na válvula de entrada. / The present work addresses the behavior of a primary processing plant subjected to slug flow pattern at its entrance. The flow in a pipeline system is described by a simplified concentrated
parameter model, which preserves the main physical features that are important to control the plant. The dynamic response of the plant is then analyzed. Using a standard control strategy for
the gas liquid separator, it is seen that the flow oscillations are transmitted to the liquid and gas outlets. In order to obtain a more stable outlet flow, the liquid level in the separator is then
allowed to fluctuate within a given range, by reducing the effect of the controller constants, and establishing an additional control directly on the inlet entrance valve.
|
16 |
Modelagem computacional de escoamentos com duas e três fases em reservatórios petrolíferos heterogêneos / Computational modeling of two and three-phase flow in heterogeneous petroleum reservoirsGrazione de Souza 21 February 2008 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Considera-se neste trabalho um modelo matemático para escoamentos com duas e três fases em reservatórios petrolíferos e a modelagem computacional do sistema de equações governantes para a sua solução numérica. Os fluidos são imiscíveis e incompressíveis e as heterogeneidades da rocha reservatório são modeladas estocasticamente. Além disso, é modelado o fenômeno de histerese para a fase óleo via funções de permeabilidades relativas. No caso de escoamentos trifásicos água-óleo-gás a escolha de expressões gerais para as funções de permeabilidades relativas pode levar à perda de hiperbolicidade estrita e, desta maneira, à existência de uma região elíptica ou de pontos umbílicos para o sistema não linear de leis de conservação hiperbólicas que descreve o transporte convectivo das fases fluidas. Como conseqüência, a perda de hiperbolicidade estrita pode levar à existência de choques não clássicos (também chamados de choques transicionais ou choques subcompressivos) nas soluções de escoamentos trifásicos, de difícil simulação numérica. Indica-se um método numérico com passo de tempo fracionário, baseado
em uma técnica de decomposição de operadores, para a solução numérica do sistema governante de equações diferenciais parciais que modela o escoamento bifásico água-óleo imiscível
em reservatórios de petróleo heterogêneos. Um simulador numérico bifásico água-óleo eficiente desenvolvido pelo grupo de pesquisa no qual o autor está inserido foi modificado com
sucesso para incorporar a histerese sob as hipóteses consideradas. Os resultados numéricos obtidos para este caso indicam fortes evidências que o método proposto pode ser estendido para o caso trifásico água-óleo-gás. A técnica de decomposição de operadores em dois níveis permite o uso de passos de tempo distintos para os quatro problemas definidos pelo procedimento de decomposição: convecção, difusão, pressão-velocidade e relaxação para histerese. O problema de transporte convectivo (hiperbólico) das fases fluidas é aproximado por um esquema central de diferenças finitas explícito, conservativo, não oscilatório e de segunda ordem. Este
esquema é combinado com elementos finitos mistos, localmente conservativos, para a aproximação dos problemas de transporte difusivo (parabólico) e de pressão-velocidade (elíptico).
O operador temporal associado ao problema parabólico de difusão é resolvido fazendo-se uso de uma estratégia implícita de solução (Backward Euler). Uma equação diferencial ordinária
é resolvida (analiticamente) para a relaxação relacionada à histerese. Resultados numéricos para o problema bifásico água-óleo em uma dimensão espacial em concordância com resultados semi-analíticos disponíveis na literatura foram reproduzidos e novos resultados em meios heterogêneos, em duas dimensões espaciais, são apresentados e a extensão desta técnica para o caso de problemas trifásicos água-óleo-gás é proposta. / We consider in this work a mathematical model for two- and three-phase flow problems in petroleum reservoirs and the computational modeling of the governing equations for its numerical solution. We consider two- (water-oil) and three-phase (water-gas-oil) incompressible, immiscible flow problems and the reservoir rock is considered to be heterogeneous. In our model, we also take into account the hysteresis effects in the oil relative permeability functions.
In the case of three-phase flow, the choice of general expressions for the relative permeability functions may lead to the loss of strict hyperbolicity and, therefore, to the existence of an elliptic region or umbilic points for the system of nonlinear hyperbolic conservation laws describing the convective transport of the fluid phases. As a consequence, the loss of hyperbolicity may lead to the existence of nonclassical shocks (also called transitional shocks or undercompressive shocks) in three-phase flow solutions. We present a new, accurate fractional time-step method based on an operator splitting technique for the numerical solution of a system of partial differential
equations modeling two-phase, immiscible water-oil flow problems in heterogeneous petroleum reservoirs. An efficient two-phase water-oil numerical simulator developed by our
research group was sucessfuly extended to take into account hysteresis effects under the hypotesis previously annouced. The numerical results obtained by the procedure proposed indicate
numerical evidence the method at hand can be extended for the case of related three-phase water-gas-oil flow problems. A two-level operator splitting technique allows for the use of distinct time steps for the four problems defined by the splitting procedure: convection, diffusion, pressure-velocity and relaxation for hysteresis. The convective transport (hyperbolic) of the fluid phases is approximated by a high resolution, nonoscillatory, second-order, conservative central difference scheme in the convection step. This scheme is combined with locally conservative mixed finite elements for the numerical solution of the diffusive transport (parabolic) and the pressure-velocity (elliptic) problems. The time discretization of the parabolic problem is performed by means of the implicit Backward Euler method. An ordinary diferential equation
is solved (analytically) for the relaxation related to hysteresis. Two-phase water-oil numerical results in one space dimensional, in which are in a very good agreement with semi-analitycal
results available in the literature, were computationaly reproduced and new numerical results in two dimensional heterogeneous media are also presented and the extension of this technique to the case of three-phase water-oil-gas flows problems is proposed.
|
17 |
Modelagem computacional de escoamentos com duas e três fases em reservatórios petrolíferos heterogêneos / Computational modeling of two and three-phase flow in heterogeneous petroleum reservoirsGrazione de Souza 21 February 2008 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Considera-se neste trabalho um modelo matemático para escoamentos com duas e três fases em reservatórios petrolíferos e a modelagem computacional do sistema de equações governantes para a sua solução numérica. Os fluidos são imiscíveis e incompressíveis e as heterogeneidades da rocha reservatório são modeladas estocasticamente. Além disso, é modelado o fenômeno de histerese para a fase óleo via funções de permeabilidades relativas. No caso de escoamentos trifásicos água-óleo-gás a escolha de expressões gerais para as funções de permeabilidades relativas pode levar à perda de hiperbolicidade estrita e, desta maneira, à existência de uma região elíptica ou de pontos umbílicos para o sistema não linear de leis de conservação hiperbólicas que descreve o transporte convectivo das fases fluidas. Como conseqüência, a perda de hiperbolicidade estrita pode levar à existência de choques não clássicos (também chamados de choques transicionais ou choques subcompressivos) nas soluções de escoamentos trifásicos, de difícil simulação numérica. Indica-se um método numérico com passo de tempo fracionário, baseado
em uma técnica de decomposição de operadores, para a solução numérica do sistema governante de equações diferenciais parciais que modela o escoamento bifásico água-óleo imiscível
em reservatórios de petróleo heterogêneos. Um simulador numérico bifásico água-óleo eficiente desenvolvido pelo grupo de pesquisa no qual o autor está inserido foi modificado com
sucesso para incorporar a histerese sob as hipóteses consideradas. Os resultados numéricos obtidos para este caso indicam fortes evidências que o método proposto pode ser estendido para o caso trifásico água-óleo-gás. A técnica de decomposição de operadores em dois níveis permite o uso de passos de tempo distintos para os quatro problemas definidos pelo procedimento de decomposição: convecção, difusão, pressão-velocidade e relaxação para histerese. O problema de transporte convectivo (hiperbólico) das fases fluidas é aproximado por um esquema central de diferenças finitas explícito, conservativo, não oscilatório e de segunda ordem. Este
esquema é combinado com elementos finitos mistos, localmente conservativos, para a aproximação dos problemas de transporte difusivo (parabólico) e de pressão-velocidade (elíptico).
O operador temporal associado ao problema parabólico de difusão é resolvido fazendo-se uso de uma estratégia implícita de solução (Backward Euler). Uma equação diferencial ordinária
é resolvida (analiticamente) para a relaxação relacionada à histerese. Resultados numéricos para o problema bifásico água-óleo em uma dimensão espacial em concordância com resultados semi-analíticos disponíveis na literatura foram reproduzidos e novos resultados em meios heterogêneos, em duas dimensões espaciais, são apresentados e a extensão desta técnica para o caso de problemas trifásicos água-óleo-gás é proposta. / We consider in this work a mathematical model for two- and three-phase flow problems in petroleum reservoirs and the computational modeling of the governing equations for its numerical solution. We consider two- (water-oil) and three-phase (water-gas-oil) incompressible, immiscible flow problems and the reservoir rock is considered to be heterogeneous. In our model, we also take into account the hysteresis effects in the oil relative permeability functions.
In the case of three-phase flow, the choice of general expressions for the relative permeability functions may lead to the loss of strict hyperbolicity and, therefore, to the existence of an elliptic region or umbilic points for the system of nonlinear hyperbolic conservation laws describing the convective transport of the fluid phases. As a consequence, the loss of hyperbolicity may lead to the existence of nonclassical shocks (also called transitional shocks or undercompressive shocks) in three-phase flow solutions. We present a new, accurate fractional time-step method based on an operator splitting technique for the numerical solution of a system of partial differential
equations modeling two-phase, immiscible water-oil flow problems in heterogeneous petroleum reservoirs. An efficient two-phase water-oil numerical simulator developed by our
research group was sucessfuly extended to take into account hysteresis effects under the hypotesis previously annouced. The numerical results obtained by the procedure proposed indicate
numerical evidence the method at hand can be extended for the case of related three-phase water-gas-oil flow problems. A two-level operator splitting technique allows for the use of distinct time steps for the four problems defined by the splitting procedure: convection, diffusion, pressure-velocity and relaxation for hysteresis. The convective transport (hyperbolic) of the fluid phases is approximated by a high resolution, nonoscillatory, second-order, conservative central difference scheme in the convection step. This scheme is combined with locally conservative mixed finite elements for the numerical solution of the diffusive transport (parabolic) and the pressure-velocity (elliptic) problems. The time discretization of the parabolic problem is performed by means of the implicit Backward Euler method. An ordinary diferential equation
is solved (analytically) for the relaxation related to hysteresis. Two-phase water-oil numerical results in one space dimensional, in which are in a very good agreement with semi-analitycal
results available in the literature, were computationaly reproduced and new numerical results in two dimensional heterogeneous media are also presented and the extension of this technique to the case of three-phase water-oil-gas flows problems is proposed.
|
Page generated in 0.1336 seconds