• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 15
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

G-Convergence and Homogenization of some Monotone Operators

Olsson, Marianne January 2008 (has links)
In this thesis we investigate some partial differential equations with respect to G-convergence and homogenization. We study a few monotone parabolic equations that contain periodic oscillations on several scales, and also some linear elliptic and parabolic problems where there are no periodicity assumptions. To begin with, we examine parabolic equations with multiple scales regarding the existence and uniqueness of the solution, in view of the properties of some monotone operators. We then consider G-convergence for elliptic and parabolic operators and recall some results that guarantee the existence of a well-posed limit problem. Then we proceed with some classical homogenization techniques that allow an explicit characterization of the limit operator in periodic cases. In this context, we prove G-convergence and homogenization results for a monotone parabolic problem with oscillations on two scales in the space variable. Then we consider two-scale convergence and the homogenization method based on this notion, and also its generalization to multiple scales. This is further extended to the case that allows oscillations in space as well as in time. We prove homogenization results for a monotone parabolic problem with oscillations on two spatial scales and one temporal scale, and for a linear parabolic problem where oscillations occur on one scale in space and two scales in time. Finally, we study some linear elliptic and parabolic problems where no periodicity assumptions are made and where the coefficients are created by certain integral operators. Here we prove results concerning when the G-limit may be obtained immediately and is equal to a certain weak limit of the sequence of coefficients.
2

Banachovy algebry / Banach Algebras

Machovičová, Tatiana January 2021 (has links)
By Banach algebra we mean Banach space enriched with a multiplication operation. It is a mathematical structure that is used in the non-periodic homogenization of composite materials. The theory of classical homogenization studies materials assuming the periodicity of the structure. For real materials, the assumption of a periodicity is not enough and is replaced by the so-called an abstract hypothesis based on a concept composed mainly of the spectrum of Banach algebra and Sigma convergence. This theory was introduced in 2004.
3

Homogenization in Perforated Domains / Homogenization in Perforated Domains

Rozehnalová, Petra January 2016 (has links)
Numerické řešení matematických modelů popisujících chování materiálů s jemnou strukturou (kompozitní materiály, jemně perforované materiály, atp.) obvykle vyžaduje velký výpočetní výkon. Proto se při numerickém modelování původní materiál nahrazuje ekvivalentním materiálem homogenním. V této práci je k nalezení homogenizovaného materiálu použita dvojškálová konvergence založena na tzv. rozvinovacím operátoru (anglicky unfolding operator). Tento operátor poprvé použil J. Casado-Díaz. V disertační práci je operátor definován jiným způsobem, než jak uvádí původní autor. To dovoluje pro něj dokázat některé nové vlastnosti. Analogicky je definován operátor pro funkce definované na perforovaných oblastech a jsou dokázány jeho vlastnosti. Na závěr je rozvinovací operátor použit k nalezení homogenizovaného řešení speciální skupiny diferenciálních problémů s integrální okrajovou podmínkou. Odvozené homogenizované řešení je ilustrováno na numerických experimentech.
4

Two-scale Homogenization and Numerical Methods for Stationary Mean-field Games

Yang, Xianjin 07 1900 (has links)
Mean-field games (MFGs) study the behavior of rational and indistinguishable agents in a large population. Agents seek to minimize their cost based upon statis- tical information on the population’s distribution. In this dissertation, we study the homogenization of a stationary first-order MFG and seek to find a numerical method to solve the homogenized problem. More precisely, we characterize the asymptotic behavior of a first-order stationary MFG with a periodically oscillating potential. Our main tool is the two-scale convergence. Using this convergence, we rigorously derive the two-scale homogenized and the homogenized MFG problems. Moreover, we prove existence and uniqueness of the solution to these limit problems. Next, we notice that the homogenized problem resembles the problem involving effective Hamiltoni- ans and Mather measures, which arise in several problems, including homogenization of Hamilton–Jacobi equations, nonlinear control systems, and Aubry–Mather theory. Thus, we develop algorithms to solve the homogenized problem, the effective Hamil- tonians, and Mather measures. To do that, we construct the Hessian Riemannian flow. We prove the convergence of the Hessian Riemannian flow in the continuous setting. For the discrete case, we give both the existence and the convergence of the Hessian Riemannian flow. In addition, we explore a variant of Newton’s method that greatly improves the performance of the Hessian Riemannian flow. In our numerical experiments, we see that our algorithms preserve the non-negativity of Mather mea- sures and are more stable than related methods in problems that are close to singular. Furthermore, our method also provides a way to approximate stationary MFGs.
5

G-Convergence and Homogenization of some Sequences of Monotone Differential Operators

Flodén, Liselott January 2009 (has links)
This thesis mainly deals with questions concerning the convergence of some sequences of elliptic and parabolic linear and non-linear operators by means of G-convergence and homogenization. In particular, we study operators with oscillations in several spatial and temporal scales. Our main tools are multiscale techniques, developed from the method of two-scale convergence and adapted to the problems studied. For certain classes of parabolic equations we distinguish different cases of homogenization for different relations between the frequencies of oscillations in space and time by means of different sets of local problems. The features and fundamental character of two-scale convergence are discussed and some of its key properties are investigated. Moreover, results are presented concerning cases when the G-limit can be identified for some linear elliptic and parabolic problems where no periodicity assumptions are made.
6

Méthodes d’homogénéisation et simulations numériques appliquées à la réponse électromagnétique des matériaux multi-échelles complexes / Homogenization methods and numerical simulations applied to the electromagnetic response of complex multiscale materials

Canot, Hélène 07 December 2018 (has links)
Les travaux de cette thèse concernent l'homogénéisation d'équations de Maxwell harmoniques tridimensionnelles, modélisant la propagation d'une onde électromagnétique issue de la foudre, de l'air dans le matériau composite. La problématique des composites étant, par exemple en aéronautique, l'évacuation de la foudre et la protection contre les agressions électromagnétiques. Nous considérons une structure constituée de fibres de carbone incluses dans une résine époxy qui sera elle-même nano chargée. Rendant ainsi le composite électriquement conducteur. Afin d'obtenir le problème homogénéisé nous utilisons l'analyse asymptotique à deux échelles. Puis nous justifions mathématiquement le résultat par la convergence à deux échelles. La solution du champ électrique est approchée par l'addition du champ électrique moyen et le champ correcteur, dépendant de la microstructure, et solution des problèmes de cellule. Dans la deuxième partie, nous proposons une validation numérique du modèle simplifié en 2D via des simulations avec le logiciel libre d'éléments finis Freefem ++. Trois cas tests seront présentés avant de valider la méthode d'homogénéisation. Enfin, en guise d'illustration du modèle, deux exemples d'agressions électromagnétiques : l'arc en retour de foudre de type A et une impulsion électromagnétique nucléaire seront testées dans le domaine fréquentiel. / The work of this thesis concerns the homogenization of three-dimensional harmonic Maxwell equations, modeling the propagation of an electromagnetic wave originating from lightning, from air in the composite material. The problem of composites being, for example in aeronautics, the evacuation of the lightning and the protection against the electromagnetic aggressions. We consider a structure made of carbon fibers included in an epoxy resin which will itself be nano- charged. Thus rendering the composite electrically conductive. In order to obtain the homogenized problem, we use asymptotic analysis at two scales. Then we mathematically justify the result by two-scale convergence. The solution of the electric field is approximated by the addition of the average electric field and the correct field, depending on the microstructure, and solution of the cell problems. In the second part, we propose a numerical validation of the simplified model in 2D via simulations with the free finite element software Freefem ++. Three test cases will be presented before validating the homogenization method. Finally, as an illustration of the model, two examples of electromagnetic aggression: the Type A lightning bolt and a nuclear electromagnetic pulse will be tested in the frequency domain.
7

Unfolding Operators in Various Oscillatory Domains : Homogenization of Optimal Control Problems

Aiyappan, S January 2017 (has links) (PDF)
In this thesis, we study homogenization of optimal control problems in various oscillatory domains. Specifically, we consider four types of domains given in Figure 1 below. Figure 1: Oscillating Domains The thesis is organized into six chapters. Chapter 1 provides an introduction to our work and the rest of the thesis. The main contributions of the thesis are contained in Chapters 2-5. Chapter 6 presents the conclusions of the thesis and possible further directions. A brief description of our work (Chapters 2-5) follows: Chapter 2: Asymptotic behaviour of a fourth order boundary optimal control problem with Dirichlet boundary data posed on an oscillating domain as in Figure 1(A) is analyzed. We use the unfolding operator to study the asymptotic behavior of this problem. Chapter 3: Homogenization of a time dependent interior optimal control problem on a branched structure domain as in Figure 1(B) is studied. Here we pose control on the oscillating interior part of the domain. The analysis is carried out by appropriately defined unfolding operators suitable for this domain. The optimal control is characterized using various unfolding operators defined at each branch of every level. Chapter 4: A new unfolding operator is developed for a general oscillating domain as in Figure 1(C). Homogenization of a non-linear elliptic problem is studied using this new un-folding operator. Using this idea, homogenization of an optimal control problem on a circular oscillating domain as in Figure 1(D) is analyzed. Chapter 5: Homogenization of a non-linear optimal control problem posed on a smooth oscillating domain as in Figure 1(C) is studied using the unfolding operator.
8

Selected Topics in Homogenization

Persson, Jens January 2012 (has links)
The main focus of the present thesis is on the homogenization of some selected elliptic and parabolic problems. More precisely, we homogenize: non-periodic linear elliptic problems in two dimensions exhibiting a homothetic scaling property; two types of evolution-multiscale linear parabolic problems, one having two spatial and two temporal microscopic scales where the latter ones are given in terms of a two-parameter family, and one having two spatial and three temporal microscopic scales that are fixed power functions; and, finally, evolution-multiscale monotone parabolic problems with one spatial and an arbitrary number of temporal microscopic scales that are not restricted to be given in terms of power functions. In order to achieve homogenization results for these problems we study and enrich the theory of two-scale convergence and its kins. In particular the concept of very weak two-scale convergence and generalizations is developed, and we study an application of this convergence mode where it is employed to detect scales of heterogeneity. / Huvudsakligt fokus i avhandlingen ligger på homogeniseringen av vissa elliptiska och paraboliska problem. Mer precist så homogeniserar vi: ickeperiodiska linjära elliptiska problem i två dimensioner med homotetisk skalning; två typer av evolutionsmultiskaliga linjära paraboliska problem, en med två mikroskopiska skalor i både rum och tid där de senare ges i form av en tvåparameterfamilj, och en med två mikroskopiska skalor i rum och tre i tid som ges i form av fixa potensfunktioner; samt, slutligen, evolutionsmultiskaliga monotona paraboliska problem med en mikroskopisk skala i rum och ett godtyckligt antal i tid som inte är begränsade till att vara givna i form av potensfunktioner. För att kunna uppnå homogeniseringsresultat för dessa problem så studerar och utvecklar vi teorin för tvåskalekonvergens och besläktade begrepp. Speciellt så utvecklar vi begreppet mycket svag tvåskalekonvergens med generaliseringar, och vi studerar en tillämpningav denna konvergenstyp där den används för att detektera förekomsten av heterogenitetsskalor.
9

Two-scale homogenization of systems of nonlinear parabolic equations

Reichelt, Sina 11 December 2015 (has links)
Ziel dieser Arbeit ist es zwei verschiedene Klassen von Systemen nichtlinearer parabolischer Gleichungen zu homogenisieren, und zwar Reaktions-Diffusions-Systeme mit verschiedenen Diffusionslängenskalen und Gleichungen vom Typ Cahn-Hilliard. Wir betrachten parabolische Gleichungen mit periodischen Koeffizienten, wobei die Periode dem Verhältnis der charakteristischen mikroskopischen zu der makroskopische Längenskala entspricht. Unser Ziel ist es, effektive Gleichungen rigoros herzuleiten, um die betrachteten Systeme besser zu verstehen und den Simulationsaufwand zu minimieren. Wir suchen also einen Konvergenzbegriff, mit dem die Lösung des Ausgangsmodells im Limes der Periode gegen Null gegen die Lösung des effektiven Modells konvergiert. Um die periodische Mikrostruktur und die verschiedenen Diffusivitäten zu erfassen, verwenden wir die Zwei-Skalen Konvergenz mittels periodischer Auffaltung. Der erste Teil der Arbeit handelt von Reaktions-Diffusions-Systemen, in denen einige Spezies mit der charakteristischen Diffusionslänge der makroskopischen Skala und andere mit der mikroskopischen diffundieren. Die verschiedenen Diffusivitäten führen zu einem Verlust der Kompaktheit, sodass wir nicht direkt den Grenzwert der nichtlinearen Terme bestimmen können. Wir beweisen mittels starker Zwei-Skalen Konvergenz, dass das effektive Modell ein zwei-skaliges Modell ist, welches von der makroskopischen und der mikroskopischen Skale abhängt. Unsere Methode erlaubt es uns, explizite Raten für die Konvergenz der Lösungen zu bestimmen. Im zweiten Teil betrachten wir Gleichungen vom Typ Cahn-Hilliard, welche ortsabhängige Mobilitätskoeffizienten und allgemeine Potentiale beinhalten. Wir beweisen evolutionäre Gamma-Konvergenz der zugehörigen Gradientensysteme basierend auf der Gamma-Konvergenz der Energien und der Dissipationspotentiale. / The aim of this thesis is to derive homogenization results for two different types of systems of nonlinear parabolic equations, namely reaction-diffusion systems involving different diffusion length scales and Cahn-Hilliard-type equations. The coefficient functions of the considered parabolic equations are periodically oscillating with a period which is proportional to the ratio between the charactersitic microscopic and macroscopic length scales. In view of greater structural insight and less computational effort, it is our aim to rigorously derive effective equations as the period tends to zero such that solutions of the original model converge to solutions of the effective model. To account for the periodic microstructure as well as for the different diffusion length scales, we employ the method of two-scale convergence via periodic unfolding. In the first part of the thesis, we consider reaction-diffusion systems, where for some species the diffusion length scale is of order of the macroscopic length scale and for other species it is of order of the microscopic one. Based on the notion of strong two-scale convergence, we prove that the effective model is a two-scale reaction-diffusion system depending on the macroscopic and the microscopic scale. Our approach supplies explicit rates for the convergence of the solution. In the second part, we consider Cahn-Hilliard-type equations with position-dependent mobilities and general potentials. It is well-known that the classical Cahn-Hilliard equation admits a gradient structure. Based on the Gamma-convergence of the energies and the dissipation potentials, we prove evolutionary Gamma-convergence, for the associated gradient system such that we obtain in the limit of vanishing periods a Cahn-Hilliard equation with homogenized coefficients.
10

Homogenization of Some Selected Elliptic and Parabolic Problems Employing Suitable Generalized Modes of Two-Scale Convergence

Persson, Jens January 2010 (has links)
<p>The present thesis is devoted to the homogenization of certain elliptic and parabolic partial differential equations by means of appropriate generalizations of the notion of two-scale convergence. Since homogenization is defined in terms of H-convergence, we desire to find the H-limits of sequences of periodic monotone parabolic operators with two spatial scales and an arbitrary number of temporal scales and the H-limits of sequences of two-dimensional possibly non-periodic linear elliptic operators by utilizing the theories for evolution-multiscale convergence and λ-scale convergence, respectively, which are generalizations of the classical two-scale convergence mode and custom-made to treat homogenization problems of the prescribed kinds. Concerning the multiscaled parabolic problems, we find that the result of the homogenization depends on the behavior of the temporal scale functions. The temporal scale functions considered in the thesis may, in the sense explained in the text, be slow or rapid and in resonance or not in resonance with respect to the spatial scale function. The homogenization for the possibly non-periodic elliptic problems gives the same result as for the corresponding periodic problems but with the exception that the local gradient operator is everywhere substituted by a differential operator consisting of a product of the local gradient operator and matrix describing the geometry and which depends, effectively, parametrically on the global variable.</p>

Page generated in 0.0902 seconds