• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 52
  • 52
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sprouty regulation of tyrosine kinase signal transduction is governed by tyrosine phosphorylation: a functional role for sprouty2 N- and C- terminal tyrosines /

Nadeau, Robert J., January 2006 (has links) (PDF)
Thesis (Ph.D.) in Biochemistry and Molecular Biology--University of Maine, 2006. / Includes vita. Includes bibliographical references (leaves 78-93).
2

HAMSTER OVIDUCTIN ENHANCES TYROSINE PHOSPHORYLATION OF SPERM PROTEINS DURING CAPACITATION

Saccary, LAURELLE 02 February 2009 (has links)
Capacitation is essential for fertilization of ovulated oocytes. Capacitation is correlated with activation of a signal transduction pathway leading to protein tyrosine phosphorylation, an essential prerequisite for fertilization. Oviductin has been shown to bind to the acrosomal cap and the equatorial segment region of the sperm head. In light of findings reported in previous studies, we hypothesized that estrus stage-specific oviductin (EOV) enhances tyrosine phosphorylation. Immunofluorescent detection by light and confocal microscopy and immunogold labeling by electron microscopy and surface replica techniques were used to localize tyrosine phosphorylated proteins to the equatorial segment region and midpiece after incubation in medium in the presence or absence of EOV. In the presence of EOV, an increase in tyrosine phosphorylation in the equatorial segment region was observed as early as 5 minutes after incubation. On prolonging incubation in medium containing EOV immunostaining further increased, indicative of increased levels of tyrosine phosphorylation of sperm proteins as capacitation proceeds. Regardless of the presence or absence of EOV, phosphotyrosine expression was observed along the tail, specifically at the midpiece. However, this reactivity was enhanced in the presence of EOV. Western blot analysis of NP-40 extractable and non-extractable sperm proteins confirmed these observations. NP-40 extractable sperm proteins (25, 37, 44kDa) and non-extractable sperm proteins (70, 83, 90kDa) showed increased intensity when sperm were capacitated in the presence of EOV after 5-, 60-, 120- and 180-minutes of capacitation. Mass spectrophotometric analysis identified enolase, ATP-specific succinyl CoA, succinate CoA ligase, zona pellucida binding protein, heat shock protein 90, aconitase and hexokinase as proteins that undergo enhancement in tyrosine phosphorylation in the presence of EOV. The proteins identified are known to be involved in specific functions including cellular metabolism, molecular chaperoning and normal sperm development. In summary, the present investigation has provided new evidence showing that sperm capacitated in vitro in the presence of EOV display an enhanced expression of tyrosine phosphorylation compared to sperm incubated in capacitating medium alone. These results indicate that inclusion of oviductin in media used for in vitro fertilization (IVF) may improve success rates of IVF by enhancing the signaling pathways involved in sperm capacitation. / Thesis (Master, Anatomy & Cell Biology) -- Queen's University, 2009-01-30 15:38:54.594
3

Characterization of IphP from Nostoc commune UTEX 584 and a Dual Specificity Protein Phosphatase from Anabaena PCC 7120

Howell, Larry Daniel II 20 March 1998 (has links)
Protein phosphorylation is utilized universally as a mechanism of signal transduction. However, the use of tyrosine phosphorylation by bacteria has been a matter of dispute. Conventional wisdom dictated that "prokaryotic phosphorylation" was typified by phosphorylation of histidine and aspartate residues of proteins, while "eukaryotic phosphorylation" was characterized by modification of serine, threonine, or tyrosine residues. Increasing numbers of reports have emerged challenging the traditional view of "prokaryotic" and "eukaryotic" phosphorlyation. One of the strongest links unifying prokaryotic and eukaryotic protein phosphorylation to date is IphP, a genomically-encoded dual-specificity protein phosphatase from the cyanobacterium Nostoc commune UTEX 584 bearing the active-site signature sequence of eukaryotic tyrosine-specific and dual-specificity protein phosphatases. The catalytic properties and substrate specificity of IphP were examined in detail. The enzyme was able to discriminate among a variety of exogenous peptides and proteins. Kinetic studies revealed that IphP favors protein / peptide substrates over low molecular weight compounds. Heparin effected IphP activity in a substrate-dependent manner. Enzyme activity toward casein (P-Ser) and MAP kinase (P-Thr/P-Tyr) was stimulated in the presence of the polyanion, whereas activity was inhibited by heparin toward other protein substrates. Both stimulation and inhibition by heparin were dose-dependent. The ability to stimulate IphP activity toward select substrates was attributed to the ability of heparin to recruit the enzyme and substrate to the same microenvironment. To facilitate future genetic studies examining the role of tyrosine phosphorylation in cyanobacteria, we searched for evidence of protein tyrosine phosphorylation in Anabaena PCC 7120. In a collaborative effort with the laboratory of Dr. Potts, tyrosine phosphorylated proteins were identified in Anabaena utilizing several approaches, including comparative labelling with alpha- vs gamma-32P-ATP, phosphoamino acid analysis, and selective hydrolysis with a tyrosine specific protein phosphatase. Together, these data unequivocally demonstrate the presence of tyrosine-phosphorylated proteins in Anabaena PCC 7120. Extracts of Anabaena PCC 7120 were examined for protein tyrosine phosphatase activity. An apparent PTP activity was detected, partially purified, and characterized. The protein phosphatase was ~38kDa by SDS-PAGE and sucrose density gradient centrifugation and displayed dual-specificity protein phosphatase (DSP) activity in vitro. The enzyme was localized to the periplasm and was thus assigned the title PAD, for Periplasmic Anabaena DSP. Periplasmic phosphoproteins of ~120 and 55 kDa that had been radiolabelled in vitro were dephosphorylated by partially purified PAD. PAD activity varied in vivo ~5-fold in a rhthymic, seemingly diurnal manner. Periplasmic proteins, including the 55kDa protein, were labelled in vivo and the degree of radiolabel incorporated into these proteins varied inversely with PAD activity. / Ph. D.
4

The modulation of functional recombinant NMDA receptors by activation of recombinant mGluR5

Collett, Valerie J. January 2001 (has links)
No description available.
5

Tyrosine Phosphorylation Events in Mouse Sperm Capacitation

Arcelay, Enid 01 September 2009 (has links)
Mammalian sperm are not able to fertilize immediately upon ejaculation; they become fertilization-competent after undergoing changes in the female reproductive tract collectively termed capacitation. Although it has been established that capacitation is associated with an increase in tyrosine phosphorylation, little is known about the role of this event in sperm function. In this work we used a combination of two dimensional gel electrophoresis and mass spectrometry to identify proteins that undergo tyrosine phosphorylation during capacitation. Some of the identified proteins are the mouse orthologues of human sperm proteins known to undergo tyrosine phosphorylation. Among them we identified VDAC, tubulin, PDH E1 β chain, glutathione S-transferase, NADH dehydrogenase (ubiquinone) Fe-S protein 6, acrosin binding protein precursor (sp32), proteasome subunit alpha type 6b and cytochrome b-c1 complex. In addition to previously described proteins, we identified two testis-specific aldolases as substrates for tyrosine phosphorylation. Genomic and EST analyses suggest that these aldolases are retroposons expressed exclusively in the testis, as has been reported elsewhere. Because of the importance of glycolysis for sperm function, we hypothesize that tyrosine phosphorylation of these proteins can play a role in the regulation of glycolysis during capacitation. However, neither the Km nor the Vmax of aldolase changed as a function of capacitation when its enzymatic activity was assayed in vitro, suggesting other levels of regulation for aldolase function. Looking upstream the kinase cascade, the identity of the kinase (s) that brings about the phosphorylation of the tyrosine residues remains to be elucidated. It has been suggested that the non receptor tyrosine kinase Src family is involved in the capacitation associated phosphorylation cascade. Using an immunological approach we show that the only Src family member present in mouse sperm extract is Src. The capacitation associated tyrosine phosphorylation is greatly reduced in the presence of Src specific inhibitors (SU6656 and SKI606) in vivo. As a means of control for the activity of Src inhibitors in our system, parallel experiments assaying the activity of PKA both in vivo and in vitro were realized. Surprisingly, Src inhibitors down regulates the phosphorylation of serine/threonine residues that correlate on earlier events in the capacitation, as assayed by western blot with PKA substrates antibody. However, in vitro kinase activity of PKA showed no effect of Src inhibitors in the phosphorylation of the PKA specific substrate, kemptide.
6

Role of Tyrosine Phosphorylation of Synaptophysin in the synaptic vesicle lifecycle

Johnson, Alexander James January 2012 (has links)
Synaptophysin (Syp) is a major integral synaptic vesicle (SV) protein; there are 31 copies of Syp per vesicle, which totals up to 10% of the total SV protein content. Despite being the major SV protein, little is known about the interaction partners of Syp and as a result there has been no clear role attributed to it. One key feature of Syp is that its cytoplasmic C-terminus contains 10 pentapeptide repeats, nine of which are initiated by a tyrosine residue. Syp is the major tyrosine phospho-protein on SVs. The kinase thought to phosphorylate Syp in vivo is the ubiquitously expressed non-receptor kinase C-Src. There are two splice variants of C-Src, N1- and N2-Src, which are only expressed in neuronal tissues. Although the 3 Srcs are structurally similar, they differ by a small insert of amino acids into their SH3 domains (the N-Src loop). Examination of the amino acid sequence of the cytosolic C-terminus of Syp revealed a putative type one SH3 domain interaction motif. A screen using SH3 domains of synaptic proteins as bait in GST-pull downs from nerve terminal lysate allowed an inventory of potential interaction partners of Syp to be created. Reciprocal experiments using the C-terminal of Syp as bait confirmed many of these interactions. Single point mutations of the SH3 interaction motif on Syp highlighted that syndapin and C-Src bound to Syp via this motif. These binding mutants were inserted in Syp superecliptic synaptophluorin (SypHy) to determine the functional consequences of these interactions. These mutants did not affect the trafficking of Syp when expressed in cortical neurons derived from Syp knockout mice. However, the SH3 interaction motif was fundamental for the retrieval of VAMP (vesicle associated membrane protein) when expressed in Syp knockout cultures. Importantly, this role is not mediated through a direct interaction with VAMP with the SH3 interaction motif implicating either syndapin, C-Src or both in Syp-dependent VAMP retrieval. The 3 different Srcs had different methods of interaction with Syp, and in vitro protein kinase assays the ability of the three Src splice variants to phosphorylate Syp was assessed. Key differences in both speed and efficiency of Syp phosphorylation was observed for the different Src splice variants. Mutagenesis of either all 9 tyrosine residues, only previously identified sites resulted in changes in Syp interactions in GST-pull down assays from nerve terminal lysates. To investigate the role of Syp phosphorylation in the SV lifecycle, the tyrosine pentapeptide repeats were truncated from the C-terminal of Syp in both a mCerulean tagged Syp and SypHy. The experiments showed that these potential tyrosine phosphorylation sites were not involved in the trafficking of Syp but key in the retrieval of VAMP from the plasma membrane during the SV lifecycle. I have indentified an SH3 interaction motif on the C-terminal of Syp that is critical in forming a complex of proteins that are responsible for the retrieval of VAMP during the SV lifecycle. Further experiments have shown that this key interaction is potentially phosphorylation dependent. My preliminary mass spectrometry analysis has provided a catalogue of proteins that can potentially interact with Syp, identifying proteins that may bind to either the Syp C-terminus SH3 interaction motif or to other regions in a phosphorylation dependent manner. This has provided a list of potential candidate proteins for the VAMP retrieval complex.
7

The roles of integrin-like proteins, tyrosine phosphorylation and F-actin in hyphal tip growth

Chitcholtan, Kanueng January 2006 (has links)
Tip growth, the mechanism by which hyphae, pollen tubes, root hairs, and algal rhizoids extend, is a complex and dynamic process that is characterised by localised extension at the extreme apex of the cell and morphological polarity. Its complexity suggests that high degree of regulation is needed to ensure that the characteristics of a particular cell type are maintained during growth. Regulation is likely to come about through bidirectional interplay between the cell wall and cytoplasm, although the mechanisms by which such cross-talk might occur are unknown. Results of this thesis present immunocytochemical data that indicate the presence of, and a close association between β4 integrin subunit-like proteins and proteins containing phosphorylated tyrosine residues in the oomycete Achlya bisexualis. When hyphae were plasmolysed, these proteins were present in wall-membrane attachment sites where there was also F-actin. A combination of immunoblots, ELISA, and a coupled enzyme assay suggest that phosphorylation may occur by both autophosphorylation and through the possible action of a tyrosine kinase. Tyrphostins, which are inhibitors of tyrosine kinases, abolished the anti-phosphotyrosine staining, inhibited the kinase activity, slowed tip growth and affected the organisation of the actin cytoskeleton, in a dose-dependent manner. In addition, results show A. bisexualis contains proteins epitopically similar to the rod domain of animal talin. However, these proteins do not co-localise with F-actin, and mainly locate at the sub-apical region in hyphae. For comparative purposes, Saccharomyces cerevisiae was also used to investigate the presence of β4 integrin subunit-like proteins and tyrosine phosphorylation. Immunoblotting showed that S. cereviaise contains a protein, which is found in the microsomal pellet fraction, that cross reacts with anti-β4 integrin subunit antibody. Furthermore, there are a number of proteins containing phosphotyrosine residues. Immunocytochemistry shows that this anti-β4 integrin staining is at the cortical site but anti-phosphotyrosine residues are distributed throughout cells. On the basis of an ELISA and a coupled enzyme assay, it is suggested that a soluble fraction of S. cerevisiae contains tyrosine kinase activity. This activity is strongly inhibited by tyrphostins.
8

Requirement of integrin [alpha]5[beta]1 and tyrosine phosphorylation of SHC for prohb-EGF release by GPR30, a seven transmembrane receptor for estrogen /

Quinn, Jeffrey Alan. January 2006 (has links)
Thesis (Ph. D.)--University of Rhode Island, 2006. / Typescript. Includes bibliographical references (leaves 104-121).
9

The roles of integrin-like proteins, tyrosine phosphorylation and F-actin in hyphal tip growth

Chitcholtan, Kanueng January 2006 (has links)
Tip growth, the mechanism by which hyphae, pollen tubes, root hairs, and algal rhizoids extend, is a complex and dynamic process that is characterised by localised extension at the extreme apex of the cell and morphological polarity. Its complexity suggests that high degree of regulation is needed to ensure that the characteristics of a particular cell type are maintained during growth. Regulation is likely to come about through bidirectional interplay between the cell wall and cytoplasm, although the mechanisms by which such cross-talk might occur are unknown. Results of this thesis present immunocytochemical data that indicate the presence of, and a close association between β4 integrin subunit-like proteins and proteins containing phosphorylated tyrosine residues in the oomycete Achlya bisexualis. When hyphae were plasmolysed, these proteins were present in wall-membrane attachment sites where there was also F-actin. A combination of immunoblots, ELISA, and a coupled enzyme assay suggest that phosphorylation may occur by both autophosphorylation and through the possible action of a tyrosine kinase. Tyrphostins, which are inhibitors of tyrosine kinases, abolished the anti-phosphotyrosine staining, inhibited the kinase activity, slowed tip growth and affected the organisation of the actin cytoskeleton, in a dose-dependent manner. In addition, results show A. bisexualis contains proteins epitopically similar to the rod domain of animal talin. However, these proteins do not co-localise with F-actin, and mainly locate at the sub-apical region in hyphae. For comparative purposes, Saccharomyces cerevisiae was also used to investigate the presence of β4 integrin subunit-like proteins and tyrosine phosphorylation. Immunoblotting showed that S. cereviaise contains a protein, which is found in the microsomal pellet fraction, that cross reacts with anti-β4 integrin subunit antibody. Furthermore, there are a number of proteins containing phosphotyrosine residues. Immunocytochemistry shows that this anti-β4 integrin staining is at the cortical site but anti-phosphotyrosine residues are distributed throughout cells. On the basis of an ELISA and a coupled enzyme assay, it is suggested that a soluble fraction of S. cerevisiae contains tyrosine kinase activity. This activity is strongly inhibited by tyrphostins.
10

Ca2+ intracellulaire et phosphorylation en tyrosine chez les spermatozoïdes humains. Rôle des Ca2+-ATPases /

Dorval, Véronique. January 2002 (has links)
Thèse (M.Sc.)--Université Laval, 2002. / Bibliogr.: f. [87]-99. Publié aussi en version électronique.

Page generated in 0.13 seconds