161 |
Crustal evolution of the Arabian–Nubian Shield : Insights from zircon geochronology and Nd–Hf–O isotopesYeshanew, Fitsum Girum January 2017 (has links)
The Arabian–Nubian Shield (ANS) represents a major site of juvenile Neoproterozoic crustal addition on Earth and documents Neoproterozoic tectonics bracketed by two supercontinent cycles, namely the fragmentation of Rodinia and the amalgamation of Gondwana. There is general consensus that the ANS formed by juvenile magmatic arc accretion and subsequent shield–wide post–tectonic magmatism. However, detailed understanding about the timing of events and the nature of magma sources in parts of the shield are lacking. To date, there are no isotopic data from the Paleozoic sedimentary sequences of the ANS, except those from the northern part. New zircon U–Pb, δ18O and whole–rock Nd isotopes are presented for plutonic rocks from the eastern Ethiopia, Yemen and southernmost Arabian Shield in Saudi Arabia. This thesis also presents the first combined in situ zircon U–Pb–O–Hf isotope data on the Cambrian–Ordovician sandstones of the Arabian Shield. The results are used to elucidate the crustal evolution of these parts of the ANS and to evaluate terrane correlations. Specifically, the nature of crustal growth, i.e., relative proportions of juvenile magmatic additions vs. crustal reworking, nature of the magma source and mechanism of crust formation (plume material vs. subduction zone enrichment) and understanding the provenance of the Cambrian–Ordovician sandstone sequences were important research questions addressed. The results from Paper I suggest that the eastern Ethiopian Precambrian basement is dominated by reworking of pre-Neoproterozoic supracrustal material unlike contemporaneous rocks in the remaining parts of Ethiopia— indicating the presence of two distinct lithospheric blocks of contrasting isotopic compositions in Ethiopia. Metamorphic age distributions suggest that the eastern Ethiopian block was amalgamated with the juvenile Western Ethiopian Shield during ca. 580–550 Ma. Importantly, the suture between them may represent the northern continuation of a major suture identified further south in Africa along which Gondwana amalgamated. Similarly, the Abas terrane in Yemen (Paper II) is dominated by reworking of pre–Neoproterozoic crust and shows age and isotopic compositions that are inconsistent with the Afif terrane of Saudi Arabia, precluding correlation between the two regions. The trace element systematics of plutonic rocks from the southernmost Arabian Shield (paper III) point to enrichment due to subduction component, bear no evidence of a plume component, and are consistent with the adakite-like chemistry of some of the subduction–related plutonic samples. This reinforces the notion that the shield grew through juvenile magmatic arc additions. The combined zircon U–Pb–O–Hf data of the Cambrian–Ordovician sandstones (Paper IV) indicate their derivation from both the adjacent juvenile ANS and the more southerly crustal blocks that are dominated by reworking of pre–Neoproterozoic crust. The remarkable similarity in age spectra and homogeneity of Cambrian sandstones deposited across the northern margin of Gondwana point to continental–scale sediment mixing and dispersal regulated by the supercontinent cycle. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p>
|
162 |
Nature and Origin of the East Traverse Mountains Mega-Landslide, Northern Utah (USA)Chadburn, Rodney Ryan 11 December 2020 (has links)
The East Traverse Mountains are an E-W trending mountain range dividing Utah and Salt Lake valleys in northern Utah. Geologically perplexing, the nature of the East Traverse Mountains has been under investigation for 140 years. Previously, the mountain range was proposed to be a dismembered but still coherent down-faulted block that experienced 4 km of post-thrusting extension within the Charleston-Nebo thrust sheet. However, new insight on the origin of the East Traverse Mountains indicate that it is a mega landslide, roughly ~100 km3 in size, which catastrophically slid from the upper reaches of the Little-Cottonwood stock to its present-day location. The primary evidence for this landslide includes two unusual dike swarms whose roots are in the Wasatch Range and whose upper reaches are now in the East Traverse Mountains, 16 km to the SW. A swarm of pebble dikes, indicative of porphyry mineralization is found at the center of the East Traverse Mountains and contain pebbles of Little-Cottonwood stock as well as two other intrusions found at the center of a mineralized zone. These granitic clasts have phyllic alteration, contain molybdenite grains and are sourced from a subeconomic molybdenum-copper porphyry deposit located 16 km to the NE. The other dike swarm occurs on the SE corner of the range near Alpine, Utah, which contains various andesitic and phaneritic dikes of intermediate-felsic compositions (56-69 wt.% SiO2) with localized marble on their southern margin. These dikes range in U-Pb ages from 36-29 Ma. Moreover, other evidence includes brecciation of the entire mountain range as well as along the slide path of this landslide. Breccia, as well as pseudotachylyte and cataclasite have been discovered that formed in the rapid transportation of the 1-2 km thick detached block. Devitrified pseudotachylyte veins range in thickness from 1 cm to 1 m and are present in the roof zone of the pluton. Sixteen kilometers of sliding caused 70-80% of the Oquirrh Group rocks of the East Traverse Mountains to be fractured to less than 1-inch diameter clasts in breccias and broken formations, as documented by 16 years of mining. U-bearing opal replaced significant areas of brecciated volcanic rocks when hot water seeped into highly-fractured, argillically altered rock. U-Pb ages of 6.1 ± 0.9 Ma from these opalite areas could provide a minimum age for the emplacement of the mountain block. Underlying the East Traverse Mountains slide block is a layer of fallout tuff deposited in the Jordan River Narrows member with 40Ar/39Ar ages of 6.62 ± 0.07 Ma which provides a maximum age of emplacement. Therefore, we propose that the East Traverse Mountains mega-landslide occurred between 6.1 ± 0.9 Ma and 6.62 ± 0.07 Ma. Our interpretation for the East Traverse Mountains mega-landslide model builds upon previous research and data, with the addition of these recent findings. This new interpretation is crucial for understanding the potential for large normal fault systems to create significant landslide hazards.
|
163 |
Nature and Origin of the East Traverse Mountains Mega-Landslide, Northern Utah (USA)Chadburn, Rodney Ryan 11 December 2020 (has links)
The East Traverse Mountains are an E-W trending mountain range dividing Utah and Salt Lake valleys in northern Utah. Geologically perplexing, the nature of the East Traverse Mountains has been under investigation for 140 years. Previously, the mountain range was proposed to be a dismembered but still coherent down-faulted block that experienced 4 km of post-thrusting extension within the Charleston-Nebo thrust sheet. However, new insight on the origin of the East Traverse Mountains indicate that it is a mega landslide, roughly ~100 km3 in size, which catastrophically slid from the upper reaches of the Little-Cottonwood stock to its present-day location. The primary evidence for this landslide includes two unusual dike swarms whose roots are in the Wasatch Range and whose upper reaches are now in the East Traverse Mountains, 16 km to the SW. A swarm of pebble dikes, indicative of porphyry mineralization is found at the center of the East Traverse Mountains and contain pebbles of Little-Cottonwood stock as well as two other intrusions found at the center of a mineralized zone. These granitic clasts have phyllic alteration, contain molybdenite grains and are sourced from a subeconomic molybdenum-copper porphyry deposit located 16 km to the NE. The other dike swarm occurs on the SE corner of the range near Alpine, Utah, which contains various andesitic and phaneritic dikes of intermediate-felsic compositions (56-69 wt.% SiO2) with localized marble on their southern margin. These dikes range in U-Pb ages from 36-29 Ma. Moreover, other evidence includes brecciation of the entire mountain range as well as along the slide path of this landslide. Breccia, as well as pseudotachylyte and cataclasite have been discovered that formed in the rapid transportation of the 1-2 km thick detached block. Devitrified pseudotachylyte veins range in thickness from 1 cm to 1 m and are present in the roof zone of the pluton. Sixteen kilometers of sliding caused 70-80% of the Oquirrh Group rocks of the East Traverse Mountains to be fractured to less than 1-inch diameter clasts in breccias and broken formations, as documented by 16 years of mining. U-bearing opal replaced significant areas of brecciated volcanic rocks when hot water seeped into highly-fractured, argillically altered rock. U-Pb ages of 6.1 ± 0.9 Ma from these opalite areas could provide a minimum age for the emplacement of the mountain block. Underlying the East Traverse Mountains slide block is a layer of fallout tuff deposited in the Jordan River Narrows member with 40Ar/39Ar ages of 6.62 ± 0.07 Ma which provides a maximum age of emplacement. Therefore, we propose that the East Traverse Mountains mega-landslide occurred between 6.1 ± 0.9 Ma and 6.62 ± 0.07 Ma. Our interpretation for the East Traverse Mountains mega-landslide model builds upon previous research and data, with the addition of these recent findings. This new interpretation is crucial for understanding the potential for large normal fault systems to create significant landslide hazards.
|
164 |
Geochemical evidence for incremental emplacement of Palms pluton, southern CaliforniaRoell, Jennifer L. 02 February 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The objectives of this study are, generally, to analyze and understand internal processes that produce melts in an oceanic-continental subduction setting; and, specifically, to understand the assembly of a Cretaceous magmatic arc pluton (Palms pluton), including the timing of melt emplacement(s) and melt evolution from the source. SiO2 concentrations vary from ~ 69-76 % by weight. Whole rock trace element concentrations vary up to 7 times. Zircon analysis shows a minimum age difference in the pluton of 3 my, if considering the uncertainties of the oldest and youngest samples. According to the model made from the HEAT program, this is approximately six times longer than the estimated crystallization time of one batch of melt with the same physical properties as the Palms pluton. Two distinct sources, perceived from chemical analysis of premagmatic zircons, are found throughout the pluton. REE compositional patterns show a hybridization of Proterozoic and Mesozoic sources in some, but not all, Palms pluton granites. This data suggests that the pluton formed from multiple intrusions and the Proterozoic source remained relatively consistent throughout the pluton’s assembly with few additions of younger Mesozoic source material.
|
165 |
The Role of Cenozoic Oceanic Plateau Collision in the Tectonic Growth of Western North AmericaErin Elizabeth Donaghy (18243379) 15 April 2024 (has links)
<p dir="ltr">This dissertation uses a multidisciplinary basin analysis approach to document the sedimentary, structural, and volcanic response to Cenozoic oceanic plateau collision and translation along the northwestern Cordillera. During this time, two fragments of oceanic plateau accreted in the Pacific Northwest (Siletzia terrane) and in southeastern Alaska (Yakutat terrane). My research aims to test if the Siletzia and Yakutat terranes have an early shared history as the same spreading ridge-centered plateau in the Pacific Northwest and constrain timing of breakup and translation of the Yakutat terrane to southeastern Alaska. Chapter 2 focuses on development of a new U-Pb zircon geochronology technique to aid in a more accurate and precise understanding of sediment routing systems. The goal of developing this technique is to utilize it in pinpointing the source regions along the northwestern Cordillera supplying sediment to the basin on the Yakutat terrane as it made its northward journey to southeastern Alaska. Chapter 3 focuses on creating a regional chronostratigraphy for deep-marine Cenozoic sedimentary and volcanic rocks of the peripheral rock sequence on the northern Olympic Peninsula in Washington. These sedimentary rocks directly overlie the Siletzia plateau and record basin evolution before, during, and following its collision to the continental margin. Chapter 4 uses detailed lithofacies mapping and U-Pb geochronology of metasedimentary and volcanic rocks in the Olympic subduction complex to document the structural response to seamount subduction in the Eocene. Seamount subduction began shortly after collision of the Siletzia oceanic plateau to the Pacific Northwest and played a critical role in development of the early forearc region and Ancestral Cascades arc. Chapter 5 compares the lowermost sedimentary and geochronologic basin record on both Siletzia and Yakutat terranes to test if they have an early shared history in the Pacific Northwest.</p>
|
166 |
Reconstruction de la Dynamique Précoce d'un Orogène : Mise en évidence de la Transition Rifting-Collision dans le système est-pyrénéen (France) par la Géo-thermochronologie / Reconstruction of early orogen dynamics : geo-thermochronological evidence of the rift-to-collision transition in the eastern Pyrénées (France)Ternois, Sébastien 05 July 2019 (has links)
Les orogènes collisionnels sont classiquement décrits comme le résultat de l'accrétion continentale de marges proximales. Cette accrétion conduit à la surrection des reliefs et à l'export important de produits d'érosion dans les bassins d'avant-pays qui les jalonnent. Dans ce schéma géodynamique sont alors uniquement considérés les domaines pré-orogéniques les moins déformés. Pourtant, un nombre croissant d'évidences géologiques de terrain indiquent la conservation voire la réutilisation de structures héritées de la phase extensive précédant la convergence et la collision au coeur des orogènes. À partir de l'étude géo-thermochronométrique de la bordure orientale du domaine hyper-étiré nord-pyrénéen (massif de l'Agly, Zone Nord Pyrénéenne) et de son avant-pays précoce (synclinal de Rennes-les-Bains, Bassin Aquitain), cette thèse a pour objectifs de décrire l'évolution d'une marge distale au cours des premiers stades de convergence, de quantifier les processus source-réceptacle associés et d'apporter des contraintes temporelles et paléogéographiques quant à la création des tout premiers reliefs pyrénéens issus de son inversion. Grâce à l'utilisation du multi-thermochronomètre (U-Th)/He sur zircon et apatite, deux épisodes de refroidissement sont mis en évidence dans le prisme nord-pyrénéen (Campano-Maastrichtien et Eocène), chacun d'eux synchrone d'une phase de subsidence dans le bassin d'avant-pays. J'ai ainsi pu proposer un modèle équilibré d'évolution d'une marge distale hyper-amincie par inversion de structures héritées, chevauchements de socle et sous-placage continental se matérialisant par une signature thermochronologique claire de refroidissement sans érosion au début de la convergence. L'absence d'enregistrement de refroidissement au Paléocène par l'arrêt prématuré de l'inversion précoce dans le prisme nord-pyrénéen indique l'absence significative d'érosion et la position bordière de ce prisme par rapport à un édifice déjà construit plus à l'est à cette époque. Pour caractériser cet édifice aujourd'hui disparu du fait de l'ouverture du Golfe du Lion, j'ai utilisé une approche détritique de double datation in situ (U-Th)/He - U/Pb sur zircon et mis en évidence une histoire de dénudation rapide pendant le Campano-Maastrichtien, caractéristique de la création d'une topographie précoce. Ce travail montre pour la première fois clairement la migration progressive de la déformation d'est en ouest par l'inversion de structures héritées au début de la convergence pyrénéenne, ce qui suggère l'existence d'un domaine ouvert à l'est à la fin de l'épisode extensif précédant la convergence. Cette étude met en avant le rôle de l'architecture des systèmes hyper-amincis dans la formation des orogènes collisionnels et confirme les liens étroits existant entre un orogène et ses bassins d'avant-pays. / Collisional orogens are classically described as the result of continental accretion of proximal margins. This accretion leads to the creation of relief and to the important export of erosion products in the directly adjacent foreland basins. In this geodynamic scheme, only the least deformed pre-orogenic domains are considered. However, a growing number of geological field evidences indicate the preservation or even the reuse of structures inherited from the rifting phase preceding convergence and collision within orogens. By conducting a geo-thermochronometric study of the easternmost, inverted hyperextended Aptian-Cenomanian rift system (Agly massif, North Pyrenean Zone) and the adjacent early retroforeland (Rennes-les-Bains syncline, Aquitaine Basin), this thesis aims to describe the evolution of a distal rifted margin during the first stages of convergence, to quantify the associated source-to-sink processes and to provide temporal and paleogeographic constraints regarding the creation of the very first Pyrenean reliefs resulting from inversion of the margin. Using the zircon and apatite (U-Th)/He multi-thermochronometers, I show that the Pyrenean retro-wedge records two clear phases of orogenic cooling, Late Campanian-Maastrichtian and Ypresian-Bartonian, which I relate to early inversion of the distal rifted margin and main collision, respectively. I have thus been able to propose a crustal-scale sequentially restored model for the tectonic and thermal transition from extension to peak orogenesis in the eastern Pyrenees, which suggests that both thrusting and underplating processes contributed to early inversion of the Aptian-Cenomanian rift system. The absence of Paleocene cooling record indicates little to no erosion of the Pyrenean retro-wedge, suggesting the existence of a more easterly source area supplying early retroforeland sediments at this time. To characterize this eastern edifice, which has since been destroyed by the Oligocene-Miocene opening of the Gulf of Lion, I used in situ (U-Th)/He - U/Pb double dating on detrital zircons and show rapid denudation rates during early convergence, characteristic of early topographic growth. This work shows for the first time clearly the progressive migration of deformation from east to west by inversion of inherited structures at the beginning of Pyrenean convergence. This suggests the existence of an open domain in the east at the end of the rifting phase preceding convergence. This study highlights the role of the architecture of hyper-thinned systems in the formation of collisional orogens and confirms the close links between an orogen and its foreland basins.
|
167 |
Provenance model of the Cenozoic siliciclastic sediments from the western Central Andes (16-21°S): implications for Eocene to Miocene evolution of the Andes / Provenienzmodell für die känozoischen siliziklastischen Sedimente der westlichen Zentralanden (16-21°S): Hinweise für die eozäne bis miozäne Entwicklung der AndenDecou, Audrey 25 May 2011 (has links)
No description available.
|
168 |
Evolution and decay of peneplains in the northern Lhasa terrane, Tibetan Plateau / Revealed by low-temperature thermochronology, U-Pb geochronology, provenance analyses, and geomorphometryHaider, Viktoria L. 01 July 2014 (has links)
Diese Dissertation befasst sich mit der Entwicklung von “Fastebenen”, die im Weiteren einheitlich als “Peneplains” bezeichnet werden, sowie dem Zerfall dieses markanten geomorphologischen Erscheinungsbildes im südlichsten Teil des tibetischen Plateau dem sogenannten Lhasa Block.
Im Zuge dieser Arbeit konnten neue Erkenntnisse über die Hebungsgeschichte und der Sedimentverteilung in diesem Untersuchungsgebiet gewonnen werden. Diese Ergebnisse tragen zu einem besseren Verständnis der geodynamischen Entwicklung Asiens bei, die bis heute viele Fragen aufwirft.
Ende des 19. Jahrhunderts wurden Peneplains als metastabile geomorphologische Formen angesehen, die im Zuge großflächiger Erosion entstehen. Die Bezeichnung Peneplain und das dahinter stehende Konzept werden seitdem von der geomorphologischen Gemeinschaft jedoch kontrovers diskutiert. Bis heute gibt es keine standardisierte bzw. repräsentative Definition für das nicht zu übersehende landschaftsbildende Phänomen der Peneplains. Dementsprechend gibt es auch nur wenige Ansätze zu Modellierungen oder Berechnungen mit Geoinformationssystemen. Hier, in dieser Dissertation, werden idealisierte Peneplains als erhöhte, gleichmäßige und großflächige Ebenen mit abfallenden Hängen verstanden, auch wenn sich landschaftsbildende Peneplains oft gekippt darstellen und durch tektonische Prozesse gestört bzw. bereits durch fortschreitende Erosionsprozesse angegriffen sind.
Gut erhaltene Peneplains sind speziell für das Gebiet um den höchstgelegenen See der Welt, dem Nam Co, im nördlichen Teil des Lhasa Blocks im Hochland von Tibet charakteristisch. Die Peneplains zerschneiden das dort vorkommende viel ältere und vorwiegend granitische Gestein sowie die angrenzenden Metasedimente.
Zur Bestimmung der Abkühl- und Hebungsalter der Granite wurden geo- und thermochronologische Methoden wie Zirkon U-Pb, Zirkon (U-Th)/He, Apatit (U-Th)/He und Apatit-SpaltspurenDatierung angewendet. Neben der Hebungsrate konnte auch die Freilegung des granitischen Gesteines ermittelt werden. Mit der Methode zur Bestimmung des U-Pb-Zirkonalters konnten zwei Intrusionsgruppen, um 118 Ma und 85 Ma, festgestellt werden. Ebenso wurden vulkanische Aktivitäten nachgewiesen und auf einen Zeitraum zwischen 63 Ma und 58 Ma datiert.
Thermische Modelle, aufbauend auf Zirkon- und Apatit-(U-Th)/He-Datierungen sowie auf ApatitSpaltspuren-Daten der untersuchten Granitoide, ergeben einen Hebungs- und Abkühlungszeitraum von 75 Ma bis 55 Ma mit einer Hebungsrate von 300 m/Ma, welche im Zeitfenster zwischen 55 Ma und 45 Ma stark abfällt auf 10 m/Ma. Die Auswertung der Messdaten unserer Kooperationspartner an der Universität Münster zu kosmogenen Nukliden zeigen sehr niedrigen Erosionsraten von 6-11 m/Ma und 11-16 m/Ma, in den letzten 10.000 Jahren die in den einzelnen Einzugsgebieten ermittelt wurden. Diese Daten zeugen von einer noch immer andauernden Periode der Stabilität und tragen zur Erhaltung der Peneplains bei.
Während der anhaltenden Phase der Erosion und Einebnung sind vor ungefähr 45 Ma in der untersuchten Region zwischen 3 km und 6 km Gestein abgetragen und weg transportiert worden.
Es ist naheliegend, dass das abgetragene Material als Sediment über das vorhandene Flusssystem fast vollständig in die heute bestehenden Ozenane transportiert wurde. Im Lhasa Block können nur verhältnismäßig wenig Sedimente aus dieser Zeit nachgewiesen werden. Alle bisherigen Untersuchungsergebnisse sowie die durchgeführte Sediment-Herkunftsanalyse untermauern die Theorie, dass die Peneplainbildung und ihre Erosionsprozesse in niedriger Höhe - höchstwahrscheinlich auf Meeresniveau - stattgefunden haben muss. Dieser Prozess wurde durch die Kollision des indischen Kontinents mit Asien gestoppt. Die resultierende Krustenverdickung führte zu einer Hebung der Landschaft mit den Peneplains, von Meeresniveau auf 5.000 bis 7.000 Höhenmeter. Die auf dem “das Dach der Welt” vorherrschenden idealen Klimabedingungen haben anschließend für die fast vollständige Erhaltung der Peneplains gesorgt.
Der zweite Teil der Dissertation befasst sich mit der Entwicklung einer robusten Methode Peneplains anhand digitale Höhenmodelle (DEM) zu berechnen bzw. zu kartieren. Frei zugängliche DEMs machen es möglich, Erdoberflächen repräsentativ mathematisch und statistisch zu analysieren und zu charakterisieren. Diese Analysemethode stellt eine ausgezeichnete Möglichkeit dar, die Peneplains mittels aussagekräftiger Algorithmen zu charakterisieren und digital zu kartieren.
Um Peneplains algorithmisch von der Umgebung klar abgrenzen zu können, wurde ein komplett neuer Ansatz der Fuzzylogik angewandt. Als DEM-Basis wurde ein 90 arcsec-DEM der Shuttle Radar Topography Mission (SRTM) verwendet. Mithilfe eines Geoinformationssystems (GIS) wurden Algorithmen geschrieben, die vier verschiedene kritische Parameter zur Beschreibung von Peneplains berücksichtigen: (I) Gefälle, (II) Kurvigkeit, (III) Geländerauhigkeit und (IV) Relative Höhe. Um die Eignung der Methode zu prüfen, wurde auf Basis der SRTM-DEM weltweit kartiert und mit schon in der Literatur beschriebenen Peneplains verglichen. Die dabei erhaltenen Ergebnisse von den Appalachen, den Anden, dem Zentralmassif und Neuseeland bestätigen dass ein Einsatz des Modells, weltweit und unabhängig von der Höhenlage möglich ist.
|
169 |
Vznik a vývoj davelského vulkanického komplexu / Petrogenesis and evolution of the Davle Volcanic ComplexSantolík, Václav January 2021 (has links)
The Davle Volcanic Complex (DVC) situated in the Teplá-Barrandian unit (TBU) of the Bohemian Massif, is considered as a Neoproterozoic-Cambrian magmatic arc that developed on the northern active margin of Gondwana supercontinent during Cadomian accretionary orogeny. This study combines data obtained from fieldwork, petrography, rock-forming mineral microanalysis, major and trace element analysis, Sr-Nd-Pb isotopic systematics and U-Pb zircon geochronology in order to reveal the petrogenesis and evolution of the DVC. At least three-stage metamorphism including Cadomian seafloor alteration, Variscan regional metamorphism as well as contact metamorphism related to the emplacement of the Central Bohemian Plutonic Complex affected the DVC. The studied rocks follow calc-alkaline trend whereas tholeiitic trend previously reported is rather related to younger magmatic events. The northern part of the DVC is dominated by felsic subvolcanic (plagiogranite), volcanic (dacite- rhyolite) and pyroclastic (dacitic-rhyolitic tuffs and breccias) rocks with a few outcrops of basaltic andesite-andesite pillow lavas documenting the subaqueous activity of the DVC. These rocks are Na-rich, but K-poor, the plagiogranite contains albite most likely primary in origin, and exhibit highly radiogenic εNd values (~ +6 to +11),...
|
170 |
Tectonic evolution of Aegean metamorphic core complexes, Andros and Tinos Islands, GreeceShin, Timothy Andrew 10 October 2014 (has links)
The Aegean is a classic setting for studying exhumation of high-pressure (HP) metamorphic rocks. Two end-member models are proposed to explain the uplift of these rocks: core-complex style extension along low-angle normal faults and extrusion-wedge uplift. Extrusion-wedge underplating is the mechanism that exhumed HP rocks on Evia whereas Tinos hosts several detachments varying in age from 30-9 Ma. Andros, situated between them, may be the geological manifestation of the interplay of these processes and provides an opportunity to test these models. Detachments on NW Tinos and on Andros and the enigmatic low-angle Makrotantalon Unit contact on Andros were insufficiently dated prior to this study. Geo- and thermochronometrycombined with structural observations from sampling transects in the transport direction from (1) lower plate Cycladic Blueschist Unit on Andros and Tinos, (2) middle plate Makrotantalon Unit on Andros, and (3) hanging wall Upper Unit address these issues.
Maximum depositional ages from detrital zircon U-Pb geochronometry and structures reveal Paleocene-Eocene syn-HP metamorphism thrusting resulted in an inversed-age relationship between the Permian Makrotantalon Unit and the underlying Triassic-Eocene Cycladic Blueschist Unit on Andros. The Makrotantalon Unit has an internal inversed stratigraphy whereas the Cycladic Blueschist Unit on Andros and Tinos appear stratigraphically intact. Structures and zircon and apatite (U-Th)/He ages in transects from NW Tinos (~12-8 Ma) and central Andros Cycladic Blueschist Unit (~13-7 Ma) indicate rapid cooling due to exhumation associated with the Livada Detachment. Older cooling ages (~16-10 Ma) and structures in the Makrotantalon Unit indicate later brittle strain localization on the Makrotantalon Thrust contact is accommodated by rheologically weaker serpentinites and calc-schists, resulting in slivering of the footwall under the Livada Detachment on Andros.
Estimated mean cooling slip rates of the Livada Detachment on Andros of ~3.8 (+1.2/-1.3) km/Myr and 2.1 (+0.2/-0.2) km/Myr on NW Tinos resulted in minimum vertical exhumations of 15 km and 4 km, respectively. The NCDS here accommodated ~12-25% of 60 km of HP-rock exhumation from ~30-7 Ma. We present a tectonic model to elucidate the evolution of the Makrotantalon Unit and the magnitude, temporal, and spatial variability of exhumation via detachments on these islands. / text
|
Page generated in 0.0307 seconds