• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interconnection of Laser Diode and Single Mode Fiber using Buried Waveguide Structure on the Si Bench

Pan, Chun-Hao 15 June 2004 (has links)
The target of this work is to optically interconnect a semiconductor laser and a single mode fiber (SMF) through a simple Si bench technology using buried waveguide devices. This technology is suitable for applications such as optical transceivers and add-and-drop multiplexers. Three major components, namely, planarized laser diode, buried waveguide, and SMF are hybrid integrated on the Si bench. The ridge-type laser was planarized by BCB etch-back process, and was flip-chip mounted on the Si bench. On the other hand, the sol-gel buried waveguide was passively aligned to SMF using V-groove and U-groove techniques. Miss-alignment loss as low as 1 dB can be obtained.
2

Passive Alignment of Buried Optical Waveguide and Single Mode Fiber on the Silicon Bench

Hung, Sheng-Feng 15 June 2005 (has links)
The objective of this thesis is to integrate the optical waveguide and single mode fiber in a passive alignment way on a silicon bench. This technique can reduce the complexity of packaging the individual components and increase yield of the module in order to achieve the goal of the mass production. In this module, buried waveguide structure was used for light guidance. A 1.31µm semiconductor laser was used as the input light source. Light signal launched by semiconductor laser is transferred through the buried waveguide into the single mode fiber. This module structure is consisted of two major parts, namely, the buried waveguide and the silicon bench. Buried optical Waveguide uses SO2 as the bottom cladding. Conventional photolithography procedures and etching technique were used to form a trench on the SiO2 cladding. The waveguide core was fabricated by coating the organic-inorganic hybrid materials into the trench. Finally, an organic-inorganic hybrid materials with a refractive index smaller than that of the core is used as the top cladding. The silicon benches were obtained by etching V-groove and saw-cutting U-groove on the silicon substrates for fixing the fiber. The patterning of buried waveguide and silicon V-groove were fabricated by a single optical mask procedure. Therefore accurate alignment between the waveguide and the single mode fiber can be obtained.

Page generated in 0.0301 seconds