• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of the interactome of UPF1, a key factor of Nonsense-mediated decay in Arabidopsis thaliana / Etude de l’interactome de UPF1, un acteur central du nonsense-mediated decay chez Arabidopsis thaliana

Chicois, Clara 31 January 2018 (has links)
L’ARN hélicase UPF1 est un facteur clé du Nonsense-Mediated Decay (NMD), un mécanisme impliqué dans le contrôle de la qualité des ARNm et la régulation de l’expression des gènes. Malgré d’importantes fonctions chez les plantes, le NMD y est peu décrit. Cette thèse présente l’identification et l’étude des protéines interagissant avec UPF1 chez Arabidopsis. Nous avons identifié un nouveau réseau d’interaction protéine-protéine entre UPF1 et des répresseurs de traduction dans les P-bodies. Nous proposons un modèle dans lequel la répression traductionnelle exerce une action protectrice sur les cibles du NMD. Notre approche a également identifié de nouveaux composants des P-bodies, comme l’endonucléase UCN. Son étude détaillée a révélé un lien direct avec la machinerie de decapping ainsi que de possibles rôles dans la signalisation hormonale ou les mécanismes de défense, suggérant que la modulation de l’expression d’UCN pourrait influencer d’importantes caractéristiques agronomiques. Ce travail décrit des facteurs associés à UPF1 jusqu’alors inconnus, leur étude permettra de découvrir de nouveaux mécanismes impliqués dans l’équilibre entre la traduction, le stockage et la dégradation des ARNm chez les plantes. / The RNA helicase UPF1 is a key factor of Nonsense-Mediated Decay (NMD), a paneukaryotic mechanism involved in mRNA quality control and fine-tuning of gene expression. Despite important biological functions in plants, NMD is poorly described compared to other eukaryotes. This thesis presents the identification and study of UPF1 interacting proteins in Arabidopsis. Using approaches based on immunoaffinity and mass spectrometry, we identified a novel protein-protein interaction network between UPF1 and translation repressors in P-bodies. We propose a model in which translation repression exerts a protective action on NMD targets in plants. Our approach also identified novel P-body components, including the UCN endonuclease. A detailed study revealed its direct link with the decapping machinery and possible roles in hormone signaling and defense mechanisms, suggesting that the modulation of UCN expression could influence important agronomical traits. This work describes hitherto unknown UPF1 associated factors, their study will provide novel insights into the mechanisms involved in the balance between mRNA translation, storage and decay in plants.
2

The Functional Relationship between the Nonsense-Mediated mRNA Decay Pathway and the Prematurely Terminating Ribosome

Serdar, Lucas D. 23 May 2019 (has links)
No description available.
3

Étude biochimique et biophysique de l’ARN hélicase UPF1 : un moteur moléculaire hautement régulé / Biochemical and biophysical study of the RNA helicase UPF1 : a highly regulated molecular motor

Kanaan, Joanne 09 July 2018 (has links)
UPF1 (Up-Frameshift 1) est une hélicase multifonctionnelle conservée chez tous les eucaryotes. Elle est essentielle à la voie de surveillance du NMD (Nonsense Mediated mRNA Decay), qui dégrade des ARNm portant un codon stop prématuré. UPF1 est l’archétype d’une famille d’hélicases qui partagent des corps similaires mais sont impliquées dans des voies cellulaires variées. Cependant, les relations structure-fonction et les caractéristiques biophysiques intrinsèques de ces moteurs moléculaires restent à ce jour peu connues. In vitro, le coeur hélicase d’UPF1 est hautement processif, il traverse des milliers de bases sur l’ARN ou l’ADN et déroule des doubles brins. Dans ce travail, nous avons cherché les facteurs clés régissant cette remarquable processivité en combinant des techniques de biochimie et de biophysique. En particulier, nous avons utilisé des pinces magnétiques pour étudier en temps réel des hélicases à l’échelle de la molécule unique. Contrairement à UPF1, l’hélicase IGHMBP2 de la famille UPF1-like n’est pas processive ; la processivité n’est donc pas un trait conservé au sein de la famille. Grâce à une étude fine de la structure 3D des deux hélicases, nous avons conçu divers mutants que nous avons utilisés pour identifier les éléments structuraux qui modulent la processivité. Notre approche révèle qu’UPF1 a une prise très ferme sur les acides nucléiques, garantissant de longs temps de résidence et d’action qui dictent sa haute processivité. Grâce à la variété de comportements des mutants, nous avons construit un modèle mécanistique expliquant le lien entre énergie d’interaction et processivité. Nous démontrons aussi que la processivité d’UPF1 est requise pour un processus de NMD efficace in vivo. Nous avons utilisé les mêmes outils biochimiques et biophysiques pour étudier une isoforme naturelle d’UPF1 humaine se déplaçant plus vite que l’isoforme majeure, et pour comparer la régulation d’UPF1 humaine et de levure par leurs domaines flanquants. Nous avons également caractérisé l'interaction d’UPF1 de levure avec de nouveaux partenaires. Nos travaux montrent comment la combinaison d'outils biochimiques, biophysiques, structuraux etin vivo offre des aperçus inattendus quant au mode de fonctionnement des moteurs moléculaires. / UPF1 (Up-Frameshift 1) is a multifunctional helicase that unwinds nucleic acids and is conserved throughout the eukaryote kingdom. UPF1 is required for the Nonsense Mediated mRNA Decay (NMD) surveillance pathway, which degrades mRNAs carrying premature termination codons, among other substrates. UPF1 is the archetype of a family of 11 helicases sharing similar cores but involved in various cellular pathways. However, the structure-function relationship and intrinsic biophysical properties of these molecular engines remain poorly described. In vitro, the UPF1 helicase core is highly processive, it travels along thousands of RNA or DNA bases and unwinds double-strands. In this work, we looked for key factors governing this remarkable processivity. We combined biochemical and biophysical techniques. In particular, we used magnetic tweezers to study helicases in real time at a single molecule scale. In contrast to UPF1, the related IGHMBP2 is not processive, thus processivity is not a shared family trait. Based on the 3D structures of both proteins, we designed various mutants and used them to identify structural elements that modulate processivity. Our approach reveals that UPF1 has a very firm grip on nucleic acids, guaranteeing long binding lifetimes and action times that dictate its high processivity. Thanks to the variety in mutant behaviors, we built a novel mechanistic model linking binding energy to processivity. Furthermore, we show that UPF1 processivity is required for an efficient NMD in vivo. In addition, we used the same biochemical and biophysical tools to investigate a natural human UPF1 isoform moving faster than the major isoform, and to compare the regulation of human andyeast UPF1 by their flanking domains. We also characterized the interaction of yeast UPF1 with new NMD partners. Our work shows how a combination of biochemical, biophysical, structural and in vivo tools can offer unexpected insights into the operating mode of molecular motors.
4

Interactions virus-hôte : implication de la protéine cellulaire Upf1 au niveau de la régulation de l'ARN du VIH-1

Ajamian, Lara January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
5

Interactions virus-hôte : implication de la protéine cellulaire Upf1 au niveau de la régulation de l'ARN du VIH-1

Ajamian, Lara January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
6

Etude de l'impact des facteurs eRF3 et Upf1 dans la traduction des ARN messagers porteurs d'uORF / Involvement of translation termination factor eRF3 and nonsense-mediated mRNA decay factor Upf1 in the translational control of uORFs carrying mRNAs

Aliouat, Affaf 12 July 2017 (has links)
La traduction est considérée comme une étape clé de l'expression des gènes permettant à la cellule de s'adapter aux variations de son environnement en réponse aux signaux internes ou externes. Des études bioinformatiques ont montrés que la moitié des ARN messagers chez l'homme portent, en amont de leur phase codante, des éléments régulateurs appelés uORF. Le laboratoire a montré qu'un défaut de terminaison de la traduction par déplétion du facteur de terminaison eRF3 modifie l'expression de gènes dont l'ARNm contient des uORF comme le gène ATF4. Cette modification se fait soit par un mécanisme de réinitiation après traduction de l'uORF soit par une augmentation de la stabilité de l'ARNm résultant d'un défaut de sa dégradation par la voie du "Nonsense-mediated mRNA Decay" (NMD). A travers leur association dans le même complexe et leur implication dans la terminaison de la traduction et la NMD, eRF3 et Upf1 contribuent à la régulation fine de l'expression des gènes. Cependant, on ne sait pas dans quelle mesure ces deux facteurs affectent la traduction et la stabilité des ARNm. Nous avons évalué la traduction par ribosome profiling et le taux de transcrits par RNA-seq dans les cellules humaines déplétées en eRF3 ou en Upf1. Ces analyses nous ont permis de dresser une carte des uORF traduites dans le transcriptome des cellules humaines HCT116. Nous avons également observé que peu de gènes cibles sont communs entre la déplétion en eRF3 ou en Upf1. Nos résultats appuient fortement l'hypothèse qu'il y a au moins deux classes de transcrits portant des uORF, l'une dont la régulation implique la terminaison de la traduction et l'autre dont la régulation implique la NMD. / Regulation of gene expression at the translational level is increasingly being recognized as a key mechanism by which cells can rapidly change their gene expression pattern in response to internal or external stimuli. Bioinformatic studies revealed that half of human transcripts present at least one expression regulatory element uORF in the 5’ leader sequence preceding the main ORF. We have previously shown that translation termination disruption caused by eRF3a depletion induces upregulation of the transcriptional activator ATF4 and its targeted genes partly by a translational control at uORFs, and partly in relation to a defect in Nonsense-mediated mRNA Decay activation, increasing ATF4 mRNA stability. Through their physical association and their involvement in translation termination and NMD, eRF3 and Upf1 are regulating the protein and mRNA levels of a significant number of genes and thus contribute to the fine-tuning of their expression. It is not known yet, in what extent both of these factors affect translational control and what is the subset of genes that are regulated by these factors. In this study, we evaluated translation by ribosome profiling and mRNA level by RNA-seq in human cells subjected to either eRF3a or Upf1 depletion. These analyses allowed us to draw a transcriptome-wide map of uORFs and obtained a list of functional uORFs in our reference HCT116 transcriptome. We also observe that only a small fraction of these are common targets for both eRF3a and Upf1. Our results provide strong support for the notion that different classes of transcripts bearing uORFs are regulated either by translational processes involving translation termination or by NMD.

Page generated in 0.0481 seconds