1 |
The UV spectroscopy of 3-phenyl-2-propynenitrile and it's methylated derivativesKhadija M Jawad (6634604) 11 June 2019 (has links)
<p>For decades there has been
interest in understanding early prebiotic Earth, including its atmospheric
chemistry. Saturn’s moon Titan is the only other body in our Solar System with
an atmosphere thought to resemble that of early Earth’s, and for this reason it
has garnered a lot of attention over the years. Much is now known about the
smaller molecules present in that atmosphere, starting with the most abundant,
N<sub>2</sub> and CH<sub>4</sub>, and going up to slightly larger molecules
such as cyanoacetylene and benzene. As the molecules get larger, however, so does
the gap in knowledge, especially as it pertains to nitriles. This dissertation
aims to add to the story of Titan’s nitriles by first characterizing a molecule
thought to be the photochemical product of the reaction between cyanoacetylene
and benzene, 3-phenyl-2-propyne-nitrile (PPN). The UV spectra of PPN proved
immensely interesting due to the strong presence of in-plane and out-of-plane
vibrations of b<sub>2</sub> and b<sub>1</sub> symmetry, respectively. This is
possibly a result of strong vibronic coupling between several excited
electronic states or Coriolis coupling between complementary b<sub>1</sub> and
b<sub>2</sub> vibrational levels.
The multi-layer extension of the multi-configuration time dependent Hartree
(ML-MCTDH) algorithm was used to understand how the excited states and the vibrational
levels might interact, and emission and absorption spectra were modeled and
compared to the experimental spectra. The second group of molecules studied included
the <i>ortho</i>-, <i>meta</i>-, and <i>para</i>-methyl
PPN. Strong methyl rotor activity is seen in the <i>m</i>-methyl PPN, with some activity in the <i>p</i>-methyl PPN. The methyl rotor activity in the <i>m</i>-methyl PPN is similar to other <i>meta</i>-substituted toluenes, and allows us to describe the methyl
rotor barrier height in both ground and excited electronic state. Additionally,
in all three methylated PPNs we see evidence for strong vibronic coupling in
the abundance of out-of-plane vibrations, as had been seen in PPN.</p>
|
2 |
Échanges de matière et d'énergie dans la couronne solaire : des régions actives aux nanoflares / Mass and energy exchanges in the solar corona : from active regions to nanoflaresBoutry, Céline 01 February 2012 (has links)
Le chauffage de la couronne et la formation du vent solaire sont plus que jamais d'actualité en astrophysique stellaire. En ce qui concerne le vent solaire, nous avons cherché à vérifier l'hypothèse selon laquelle il est issu des frontières de régions actives. En combinant l'imagerie en rayons X et Extrême Ultra Violet (EUV), la spectroscopie EUV et les mesures de champ magnétique longitudinal au niveau de la photosphère, nous avons développé une technique d’estimation quantitative des échanges de masse entre deux régions actives. Nous avons ainsi montré que cet échange n'est pas négligeable devant le flux de matière participant au vent solaire. Une attention particulière a été apportée aux traitements des données spectroscopiques notamment en ce qui concerne la référence en longueur d'onde. En effet, celle-ci est cruciale pour déterminer les vitesses y compris leurs signes dans les échanges. Sur la thématique des micro-événements de chauffage, nous avons développé une méthode de détection à partir d'images prises à haute cadence en rayons X. A l'aide de données spectroscopiques, nous avons pu estimer les vitesses Doppler et l’élargissement Doppler des raies dans les événements et les comparer au reste du champ de vue. Nous en avons déduit l’énergie contenue dans les vitesses non résolues, susceptible de contribuer au chauffage, qui s’avère être comparable aux pertes radiatives observées dans les régions actives. / The coronal heating and the formation of the solar wind are one of the core issues in stellar astrophysics.Concerning the solar wind, we have undertaken to verify the hypothesis that its origin is located at the borders of active regions. By combining X-ray and Extreme Ultra Violet (EUV) images, EUV spectroscopy and measurements of the longitudinal magnetic field at the photosphere, we have developed a technique for quantitatively estimating the mass exchange between two active regions. We have shown that this mass exchange is significant compared to the flow of material involved in the solar wind. Particular attention was paid to the analysis of spectroscopic data and more specifically the issue of reference wavelength. Indeed, it is crucial to determine the speeds including their signs in the exchange. On the topic of heating micro-events, we have developed a method for detecting micro-events from high-cadence X-ray images. With the help of spectroscopic data, we have been able to estimate the Doppler velocities and Doppler broadening of the lines in the events and compare them to the rest of the field of view. We derived the energy in the unresolved velocities, which can contribute to the heating, which turns out to be comparable to the radiative losses observed in active regions.
|
3 |
Retención de clorofila en Hidrotalcitas / Rétention de chlorophylle sur Hydrotalcites / Retention of chlorophyll on HydrotalcitesSommer-Marquez, Alicia Estela 26 June 2013 (has links)
Dans les expériences modélisant la photosynthèse, une bonne dispersion des molécules de chlorophylle est requise. Afin d'obtenir cette bonne dispersion, une solution consiste à les ancrer à un hôte. Dans cette étude, des nouveaux matériaux hybrides sont synthétisés en utilisant des hydrotalcites et un dérivé de la chlorophylle : la chlorophylline. La chlorophylline est incorporée et dispersée dans les hydrotalcites par co-précipitation ou pendant la reconstruction des hydrotalcites. Dans cette thèse est également discuté l'effet d'une irradiation par micro-onde. Dans tous les cas sont obtenus des matériaux stables, où les molécules de chlorophylline sont isolées et liées aux hydrotaltices par des liaisons avec les groupes hydroxy OH. Dans ce travail, de nouveaux matériaux sont synthétisés en utilisant les hydrotalcites et la chlorophylle a. Dans ce cas là, il est mis en valeur que la stabilisation de la chlorophylle a peut dépendre du support, à la fois par la nature et le rapport des métaux constituants les hydrotalcites. Ces matériaux hybrides obtenus (chlorophylle a/hydrotalcites) sont également stables. Ces matériaux ont été testés par lixiviation à l'acétone. Dans tous les cas, les composés lixiviés sont de la chlorophylle a, montrant ainsi que la nature et la composition des molécules sont préservées même après trente jours, bien qu'il soit à noter que dans le cas des hydrotalcites Ni/Al une faible fraction de la chlorophylle est décomposée en phéophytine. Finalement, bien que les hydrotalcites soient des composés relativement simples, ils s'avèrent tout à fait adaptés pour empêcher la dégradation des molécules de chlorophylle. / In experiments modeling photosynthesis, well dispersed chlorophyll molecules are required. A solution could be to anchor them on some host. In this work, new hybrid materials are synthesized using hydrotalcite and a chlorophyll derivative : chlorophyllin. Chlorophyllin is incorporated and dispersed in hydrotalcite through simultaneous precipitation or during hydrotalcite reconstruction. The effect of microwave irradiation on the crystallization step is discussed. In all cases stable materials are obtained, chlorophyllin molecules are isolated and bonded through hydrotalcite OH groups. Also new hybrid materials are synthesized using hydrotalcites and chlorophyll a. The effect of the support composition on chlorophyll a stabilization is discussed. The stability of the adsorbed chlorophyll a is affected by the support nature and the metal ratio of the hydrotalcite. The obtained hybrid compounds (chlorophyll a on hydrotalcite) are stable. Those hybrids were tested in lixiviation with acetone. In all cases, the lixiviated compound was chlorophyll a showing that the composition and nature of the molecule was preserved even after thirty days, although Ni/Al hydrotalcites decomposed a small fraction of the chlorophyll to pheophytin. Hydrotalcites being basic compounds turn out to be an adequate material to avoid degradation of chlorophyll molecules.
|
4 |
Advances in Gas Chromatography and Vacuum UV Spectroscopy: Applications to Fire Debris Analysis & Drugs of AbuseRoberson, Zackery Ray 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In forensic chemistry, a quicker and more accurate analysis of a sample is always being pursued. Speedy analyses allow the analyst to provide quick turn-around times and potentially decrease back-logs that are known to be a problem in the field. Accurate analyses are paramount with the futures and lives of the accused potentially on the line. One of the most common methods of analysis in forensic chemistry laboratories is gas chromatography, chosen for the relative speed and efficiency afforded by this method. Two major routes were attempted to further improve on gas chromatography applications in forensic chemistry.
The first route was to decrease separation times for analysis of ignitable liquid residues by using micro-bore wall coated open-tubular columns. Micro-bore columns are much shorter and have higher separation efficiencies than the standard columns used in forensic chemistry, allowing for faster analysis times while maintaining the expected peak separation. Typical separation times for fire debris samples are between thirty minutes and one hour, the micro-bore columns were able to achieve equivalent performance in three minutes. The reduction in analysis time was demonstrated by analysis of ignitable liquid residues from simulated fire debris exemplars.
The second route looked at a relatively new detector for gas chromatography known as a vacuum ultraviolet (VUV) spectrophotometer. The VUV detector uses traditional UV and far-ultraviolet light to probe the pi and sigma bonds of the gas phase analytes as well as Rydberg traditions to produce spectra that are nearly unique to a compound. Thus far, the only spectra that were not discernable were from enantiomers, otherwise even diastereomers have been differentiated. The specificity attained with the VUV detector has achieved differentiation of compounds that mass spectrometry, the most common detection method for chromatography in forensic chemistry labs, has difficulty distinguishing. This specificity has been demonstrated herein by analyzing various classes of drugs of abuse and applicability to “real world” samples has been demonstrated by analysis of de-identified seized samples.
|
5 |
The role of gas in galaxy evolution : infall, star formation, and internal structureBarentine, John Caleb 09 July 2014 (has links)
The story of a typical spiral galaxy like the Milky Way is a tale of the transformation of metal-poor hydrogen gas to heavier elements through nuclear burning in stars. This gas is thought to arrive in early times during the assembly phase of a galaxy and at late times through a combination of hot and cold “flows” representing external evolutionary processes that continue to the present. Through a somewhat still unclear mechanism, the atomic hydrogen is converted to molecules that collect into clouds, cool, condense, and form stars. At the end of these stars’ lives, much of their constituent gas is returned to the galaxy to participate in subsequent generations of star formation. In earlier times in the history of the universe, frequent and large galaxy mergers brought additional gas to further fuel this process. However, major merger activity began an ongoing decline several Gyr ago and star formation is now diminishing; the universe is in transitioning to an era in which the structural evolution of disk galaxies is dominated by slow, internal (“secular”) processes. In this evolutionary regime, stars and the gas from which they are formed participate in resonant gravitational interactions within disks to build ephemeral structures such as bars, rings, and small scale-height central bulges. This regime is expected to last far into the future in a galaxy like the Milky Way, punctuated by the periodic accretion of dwarf satellite galaxies but lacking in the “major” mergers that kinematically scramble disks into ellipticals. This thesis examines details of the story of gas from infall to structure-building in three major parts. The High- and Intermediate-Velocity Clouds (HVCs/IVCs) are clouds of H i gas at velocities incompatible with simple models of differential Galactic rotation. Proposed ideas explaining their observed properties and origins include (1) the infall of low-metallicity material from the Halo, possibly as cold flows along filaments of a putative “Cosmic Web”; (2) gas removed from dwarf satellite galaxies orbiting the Milky Way via some combination of ram pressure stripping and tidal disruption; and (3) the supply and return feeds of a “Galactic Fountain” cycling gas between the Disk and Halo. Numerical values of their observed properties depend strongly on the Clouds’ distances. In Chapter 2, we summarize results of an ongoing effort to obtain meaningful distances to a selection of HVCs and IVCs using the absorption-line bracketing method. We find the Clouds are not at cosmological distances, and with the exception of the Magellanic Stream, they are generally situated within a few kiloparsecs of the Disk. The strongest discriminator of the above origin scenarios are the heavy element abundances of the Clouds, but to date few reliable Cloud metal- licities have been published. We used archival UV spectroscopy, supplemented by new observations with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope and H I 21 cm emission spectroscopy from a variety of sources to compute elemental abundances relative to hydrogen for 39 HVC/IVC components along 15 lines of sight. Many of these are previously unpublished. We find support for all three origin scenarios enumerated above while more than doubling the number of robust measurements of HVCs/IVCs in existence. The results of this work are detailed in Chapter 3. In Chapter 4 we present the results of a spectroscopic study of the high-mass protostellar object NGC 7538 IRS 9 made with the Texas Echelon Cross Echelle Spectrograph (TEXES), a sensitive, high spectral resolution, mid-infrared grating spectrometer and compare our observations to published data on the nearby object NGC 7538 IRS 1. Forty-six individual lines in vibrational modes of the molecules C₂H₂, CH₄, HCN, NH₃ and CO were detected, including two isotopologues (¹³CO, ¹²C¹⁸O) and one combination mode ([nu]₄+[nu]₅ C₂H₂). Fitting synthetic spectra to the data yielded the Doppler shift, excitation temperature, Doppler b parameter, column density and covering factor for each molecule observed; we also computed column density upper limits for lines and species not detected, such as HNCO and OCS. We find differences among spectra of the two objects likely attributable to their differing radiation and thermal environments. Temperatures and column densities for the two objects are generally consistent, while the larger line widths toward IRS 9 result in less saturated lines than those toward IRS 1. Finally, we compute an upper limit on the size of the continuum-emitting region (~2000 AU) and use this constraint and our spectroscopy results to construct a schematic model of IRS 9. In Chapters 5 and 6, we describe studies of the bright, nearby, edge-on spiral galaxies NGC 4565 and NGC 5746, both previously classified as type Sb spirals with measured bulge-to-total luminosity ratios B/T ≃ 0.4. These ratios indicate merger-built, “classical” bulges but in reality represent the photometric signatures of bars seen end-on. We performed 1-D photometric decompositions of archival Hubble Space Telescope, Spitzer Space Telescope, and Sloan Digital Sky Survey images spanning a range of wavelengths from the optical to near-infrared that penetrate the thick midplane dust in each galaxy. In both, we find high surface brightness, central stellar components that are clearly distinct from the boxy bar and from the disk; we interpret these structures as small scale height “pseudobulges” built from disk material via internal, resonant gravitational interactions among disk material − not classical bulges. The brightness profiles of the innermost component of each galaxy is well fitted by a Sersic function with major/minor axis Sersic indices of n = 1.55±0.07 and 1.33±0.12 for NGC 4565 and n = 0.99±0.08 and 1.17 ± 0.24 for NGC 5746. The true “bulge-to-total” ratios of these galaxies are considerably smaller than once believed: 0.061+0.009 and 0.136 ± 0.019, −0.008, respectively. Therefore, more galaxies than we thought contain little or no evidence of a merger-built classical bulge. We argue further that a classical bulge cannot hide behind the dust lane of either galaxy and that other structures built exclusively through secular evolution processes such as inner rings, both revealed through the infrared imagery, argue strongly against any merger violence in the recent past history of these objects. From a formation point of view, NGC 4565 and NGC 5746 are giant, pure-disk galaxies, and we do not understand how such galaxies form in a ΛCDM universe. This presents a challenge to our picture of galaxy formation by hierarchical clustering because it is difficult to grow galaxies as large as these without making big, classical bulges. We summarize the work presented in this thesis in Chapter 7 and conclude with speculations about the future direction of research in this field. / text
|
6 |
Desenvolvimento de método para quantificar a degradação de nitronas e identificação dos seus metabólitos de oxidaçãoLima, Kelly Sonza January 2016 (has links)
Orientador: Prof. Dr. Artur Franz Keppler / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Ciência e Tecnologia/Química, 2016. / Em termos gerais, o estresse oxidativo decorre de um desequilibrio entre a geracao de compostos oxidantes e a atuacao dos sistemas de defesa antioxidante. Quando sao formadas quantidades significativas de radicais livres, estes conduzem ao estresse oxidativo, responsavel por varias desordens fisiologicas, podendo levar ate mesmo a morte celular. O termo radical livre refere-se ao atomo ou molecula altamente reativo, que contem numero impar de eletrons em sua ultima camada eletronica. Sendo assim, ha uma necessidade de desenvolvimento de compostos que captem esses radicais livres em sistemas biologicos, para que essas deficiencias e tambem uma possivel morte celular sejam evitadas.
Atualmente existem varios compostos que possuem em geral o grupamento nitrona ou nitroso. As nitronas sao conhecidas como captadores de radicais livres, visto sua afinidade por especies paramagneticas de oxigenio, possuindo grande capacidade de minimizar o efeito deleterio de especies paramagneticas em sistemas vivos, pois estes reagem com uma variedade de diferentes radicais livres para formar adutos nitroxidos, como se fossem garmadilhash (traps) para os radicais livres (spin). Porem, ha uma grande dificuldade em detectar esses radicais, pois seu tempo de vida e curto e rapido e isto gera um grande problema de analise, impedindo a sua medicao direta e dificultando sua quantificacao. Varios metodos espectrofotometricos podem ser aplicados, mas a maioria apresenta varias limitacoes analiticas, que os impedem de serem eficazes e reprodutiveis, como a especificidade e a baixa sensibilidade a certos radicais livres.
O objetivo deste trabalho foi identificar a melhor tecnica para acompanhar o processo de transformacao das nitronas durante uma condicao oxidativa, criar uma metodologia analitica e identificar os produtos gerados durante este processo. Comparando duas diferentes tecnicas analiticas, espectroscopia UV-VIS e HPLC, foi possivel determinar que a cromatografia liquida e a mais apropriada para acompanhar a reatividade das ¿¿-aril-N-aril nitronas durante uma reacao Fenton. Alem de reprodutivel, o emprego do HPLC demonstrou-se mais completo do que o uso da espectroscopia de UV, pois a separacao cromatografica permitiu determinar o numero de especies geradas durante a reacao e, dessa maneira, determinar a reatividade das moleculas em estudo / In general terms, oxidative stress results from an desproportional generation between oxidants and compounds of antioxidant defense systems. When are formed significant amounts of free radicals, they lead to oxidative stress, responsible for many physiological disorders and may even lead to cell death. The free radical term refers to the atom or highly reactive molecule that contains odd number of electrons in its last electron shell. Thus, there is a need to develop compounds capable to capture these free radicals in biological systems so that these shortcomings and also a possible cell death are avoided.
There are several compounds formed by nitrone or nitrous grouping. Nitrones are known as free radical spin trap, because of its affinity for paramagnetic oxygen species, having large capacity to minimize the deleterious effect of paramagnetic species in living systems, since these react with a variety of different free radicals to form adducts nitroxides. However, there is great difficulty in detecting these radicals, because their lifetime is short and fast, leading a large analysis problems by preventing their direct measurement and making it difficult to quantify. Several spectroscopic methods can be applied, but most have analytical limitations that prevent them from being effective and reproducible, as the specificity and low sensitivity to certain free radicals.
The objective of this study was to identify the best technique to monitor the process of transformation of nitrones during oxidative condition, create an analytical methodology and identify the products generated during this process. Comparing two different analytical techniques, UV-VIS spectroscopy and HPLC, it was determined that the liquid chromatography is most suitable for monitoring the reactivity of á-aryl-N-aryl nitrones during a Fenton reaction. In addition to reproducibility, the use of HPLC proved to be more complete than UV spectroscopy, because the chromatographic separation allowed the determination of the number of species generated during the reaction and thereby determine the reactivity of the molecules under study.
|
7 |
Characterisation of structure and stability differences between the C-lobes of human and P. falciparum calmodulin in the presence of calmidazoliumBlagojevic, Igor, Enockson, Klara, Miras Landelius, Marcus, Strid Holmertz, Ylva, Weinesson, Emelie, Örnelöw, Emma January 2022 (has links)
Malaria is a serious disease that can lead to fatal consequences if not treated. It is mainly spread via Plasmodium falciparum, a parasite carried by mosquitoes as host organisms. As a potential way of treating malaria, research is being done on possible inhibitors of calmodulin (CaM) in the parasite. CaM is a highly conserved protein found in all eukaryotes, and is important in many essential biochemical reactions. The potential inhibitor analysed in this study is calmidazolium (CZM). This study aims to characterise structure and stability differences between the C-lobes of human and P. falciparum CaM, while analysing the effect of the presence of CZM. Previous studies have proven that CZM acts as an inhibitor to human CaM by binding to the C-lobe, with a dissociation constant in the nano molar range. In other studies, thermal stability measurements have shown that the secondary structure of P. falciparum CaM is more stable than that of human CaM. In this study, the stability measurements showed that for the ANS binding site and around tyrosines, the C-lobe of human CaM was more stable than the C-lobe of P. falciparum CaM, knowledge which was previously unknown. When studying the entire secondary structure, the C-lobe of P. falciparum CaM was found to be more stable, which is in agreement with previous studies for the secondary structure of the complete CaM variants. For binding, the dissociation constants for both the C-lobe of human CaM and for the C-lobe of P. falciparum CaM were proven to be at a lower range than micro molar, most likely in the nano molar range. This is in agreement with earlier findings regarding the entire human CaM. Furthermore, CaM and CZM were proven to have their absorbance at the same wavelengths. Finally, several amino acid differences between the C-lobes of human and P. falciparum CaM were found that could play a role in binding and stability. One specific amino acid that was suggested to contribute to the stabilisation of the C-lobe of P. falciparum CaM was isoleucine. In the C-lobe of human CaM, these isoleucines were exchanged to threonine and arginine. Another amino acid difference that could potentially play a key role was the valine versus isoleucine, where valine might contribute to the stabilisation of the ANS binding site of the C-lobe of human CaM. To perform this study, the methods fluorescence spectroscopy, UV spectroscopy and circular dichroism were used, as well as several bioinformatic tools. Overall, both stability and structure analyses have helped determine several differences between the two CaM variants, opening up possibilities to find an inhibitor that targets only the CaM of P. falciparum. CZM still remains as an interesting potential inhibitor, and can hopefully be a part of future research in malaria treatment.
|
8 |
Étude expérimentale de la production d’ions négatifs H- par des plasmas à la résonance cyclotron électronique / Experimental study of H- negative ion production by electron cyclotron resonance plasmasAleiferis, Spyridon 07 July 2016 (has links)
Cette thèse porte sur l'étude expérimentale de la production d’ions négatifs (H-) par des sources multi-dipolaires microondes (2.45 GHz) fonctionnant à la Résonance Cyclotron des Electrons (RCE). Les sources H- sont nécessaires aux accélérateurs de haute énergie et surtout pour les systèmes d’injection de neutres à haute énergie pour le chauffage des plasmas de fusion. Pour cette étude, deux sources (Prometheus I et ROSAE III) ont été conçues, fabriquées et étudiées. Ces deux sources sont munies de réseaux 2D des sources multi-dipolaires. Il est prouvé que la formation des ions négatifs dans ces sources d'ions, est dû à un mécanisme de production en volume : l'attachement dissociatif des électrons de faible énergie sur des molécules ro-vibrationallement excitées. Contrairement aux sources impliquant des réactions de surface, la production en volume a l’avantage de fonctionner sans césium. Une étude détaillée des principes fondamentaux de la production de H- est réalisée, et les voies possibles pour d'optimisation sont explorées au moyen de : sondes électrostatiques, photodetachment laser, spectroscopie d'émission optique dans la région spectrale du visible et de l'ultraviolet du vide et finalement par spectroscopie d'absorption et de fluorescence induite dans la région spectral de l'ultraviolet du vide en utilisant radiation synchrotron dans un montage expérimental spécial (SCHEME). Analytiquement:La source "Prometheus I" est d'abord étudiée en détails, dans une large gamme de conditions expérimentales (par exemple, pression, puissance, position des zones RCE). Cette étude souligne l’efficacité de production des ions H- en volume, et dévoile une fenêtre de fonctionnement optimal et des voies d'optimisation pour atteindre de plus fortes densités d'ions H-. La contribution du processus d'attachement dissociatif et de l'ionisation résonnante des neutres, à la production H- pour cette source ont été évaluée et la prépondérance de la première finalement confirmée par un modèle rendant compte du bilan des créations et pertes d’espèces.En raison de l'importance des molécules ro-vibrationnallement excitées lors du processus d'attachement dissociatif, l'étude se concentre sur leurs réactions de formation. Deux réactions de formation sont étudiées par des expériences dédiées : la désorption recombinative des atomes d'hydrogène à la surface de divers matériaux ("ROSAE III" et "SCHEME") et l'excitation par impact d'électrons à travers les états singulets temporaires ("Prometheus I"). L'étude de la désorption recombinative a été appréhendée de deux façons différentes. Avec la source ROSAE III, l'impact indirect du processus pour la production d'ions négatifs, à travers la formation de molécules ro-vibrationnellement excitées, a été évaluée dans les plasmas RCE. Dans la deuxième approche, la source "SCHEME" a été conçue pour l'étude de la désorption recombinative des atomes en utilisant le rayonnement synchrotron. La formation des états vibrationnels suite à l’excitation des états singulets, dans la source "Prometheus I" a été étudiée par des mesures d'émission de l'ultraviolet du vide.Une étude qui combine la spectroscopie d'émission de l'ultraviolet du vide, le photodétachement et la caractérisation de la cinétique des électrons par sondes électrostatiques, a permis l'identification des facteurs qui limitent la production d'ions négatifs dans le plasma RCE de "Prometheus I". Des perspectives pour surmonter ces limitations sont finalement proposées. / The present PhD thesis is devoted to the experimental study of hydrogen negative ion (H-) production in microwave-driven (2.45 GHz) multi-dipolar Electron Cyclotron Resonance (ECR) plasma sources. H- sources are required in high-energy accelerators and more importantly in neutral beam injection systems for fusion plasma heating. Towards this directions, two sources (namely, "Prometheus I" and "ROSAE III") are designed, fabricated and studied. Both sources are driven by 2D networks of dipolar ECR elementary sources. It is proven that, negative ion formation in these ion sources is governed by the volume production mechanism, which mostly refers to the dissociative attachment of low energy electrons to vibrationally excited molecules. Contrary to the so called surface sources, volume production sources have the advantage of cesium-free operation. Extended experimental study on fundamental principles of H- production is realized, and possible ways for potential source optimization are tested by means of: electrostatic probes, laser photodetachment, optical emission spectroscopy, both in the visible and vacuum ultra-violet spectral range and finally, vacuum-ultraviolet absorption and induced fluorescence spectroscopy using synchrotron radiation in a specially designed setup ("SCHEME"). Analytically:The source "Prometheus I" is initially studied in detail (EEDF, H- density, optical emission spectra etc), under a wide range of experimental conditions (e.g., pressure, power, ECR-zone location), proving its efficiency for H- volume production, and unveiling optimum operational window and paths for obtaining higher H- densities. The contribution of the dissociative attachment process and neutral resonant ionization to H- production in this source, is evaluated, and the dominance of the former is finally confirmed by an equilibrium model.Due to the importance of the ro-vibrationally excited molecules to the dissociative attachment process, the study is focused on their formation reactions. Two formation reactions are considered by adequately adapted experiments: the recombinative desorption of hydrogen atoms on the surface of various materials (ROSAE III and SCHEME) and the electron impact excitation through temporary singlet states (Prometheus I). The study of recombinative desorption is approached in two different ways. With the source ROSAE III, the indirect impact of the process to the production of negative ions, through the formation of ro-vibrationally excited molecules, is evaluated in ECR plasmas. In the second approach, the source SCHEME is designed for the independent investigation of the recombinative desorption of unexcited atoms using synchrotron radiation based diagnostics. The formation of vibrational states through singlet excitation in the source "Prometheus I" is studied by vacuum-ultraviolet emission measurements.A study that combined vacuum-ultraviolet emission spectroscopy, photodetachment and the characterization of electron kinetics with electrostatic probes, allowed the identification of the factors that limit negative ion production in the ECR plasma of "Prometheus I". Perspectives for overcoming these limitations are finally proposed.
|
9 |
Catalyse coopérative avec les ligands rédox non-innocents : processus radicalaires et organométalliques / Cooperative catalysis with redox non-innocent ligands : radical and organometallic processesJacquet, Jérémy 29 November 2016 (has links)
En raison de leur capacité à intervenir dans les processus rédox, les ligands non-innocents ont depuis longtemps suscité un intérêt chez les spectroscopistes, mais leur potentiel en catalyse n'a été que récemment considéré. Le comportement non-innocent des ligands iminosemiquinonate et de leurs dérivés est bien établi et maîtrisé, et, associés à différents métaux, ces ligands ont démontré leur efficacité dans diverses applications synthétiques, telles que les oxydations et les réactions de couplage. Ce travail de thèse a pour objectif de développer des réactivités induites par des complexes de cuivre et nickel coordinés par des ligands de type iminosemiquinonate. Tout d'abord, la capacité de ces complexes à générer des radicaux CF3 par réduction d'une source électrophile de trifluorométhylation a été démontrée, et les espèces organométalliques résultant de l'oxydation monoélectronique centrée sur le ligand ont été identifiées par spectroscopie UV-visible. Un système catalytique a également été mis au point pour la trifluorométhylation radicalaire d'éthers d'énol silylés, d'hétéroarènes et l'hydrotrifluorométhylation d'alcynes. Les propriétés rédox des ligands iminosemiquinonates ont permis l'accès au premier complexe CuII–CF3 coordiné par des ligands oxydés iminobenzoquinones. L'étude de sa réactivité a mis en évidence le rôle essentiel des ligands oxydés, qui stabilisent le degré d'oxydation +II du cuivre, sans empêcher un comportement de CuIII haute valence. Ces observations ont été attestées par un ensemble de données spectroscopiques et théoriques. Enfin, l'étude de l'influence des ligands iminosemiquinonate sur la structure et la réactivité d'espèces cuivre–nitrène, impliquées dans les réactions de transfert de nitrène catalytique, est au centre d'un projet en cours. / Because of their ability to get involved in redox events, non-innocents ligands have long sparked the interest of spectroscopists, and their potential in catalysis has only later been considered. Iminosemiquinonate radical ligands and their derivatives are well-established non-innocent ligands and have been previously used with several metals, showing their efficiency in specific synthetic applications, such as oxidations and cross-couplings. This thesis work deals with the development of reactivities using iminosemiquinonate copper and nickel complexes. First, the ability of these complexes to induce the controlled generation of CF3 radicals by reduction of a CF3+ source was demonstrated, and key organometallic species resulting from a ligand-centered single electron transfer were identified using UV-vis spectroscopy. Catalytic conditions were developed and applied to the trifluoromethylation of silyl enol ethers, heteroarenes and hydrotrifluoromethylation of alkynes. Then, the synthesis of the first well-defined CuII–CF3 complex bearing fully oxidized iminobenzoquinone ligands was achieved. The study of its reactivity revealed the prominent role of the redox ligands, which stabilize a (+II) oxidation state without preventing its ability to behave as a high-valent CuIII complex. These observations were substantiated by a combination of advanced EPR spectroscopy techniques with DFT calculations. Finally, the influence of iminosemiquinonate ligands on the structure and the reactivity of copper–nitrene species, in catalytic nitrene transfer reactions, is the focus of a last project, which is still in progress.
|
10 |
Multivariate spectroscopic methods for the analysis of solutionsWiberg, Kent January 2004 (has links)
<p>In this thesis some multivariate spectroscopic methods for the analysis of solutions are proposed. Spectroscopy and multivariate data analysis form a powerful combination for obtaining both quantitative and qualitative information and it is shown how spectroscopic techniques in combination with chemometric data evaluation can be used to obtain rapid, simple and efficient analytical methods. These spectroscopic methods consisting of spectroscopic analysis, a high level of automation and chemometric data evaluation can lead to analytical methods with a high analytical capacity, and for these methods, the term high-capacity analysis (HCA) is suggested. It is further shown how chemometric evaluation of the multivariate data in chromatographic analyses decreases the need for baseline separation. </p><p>The thesis is based on six papers and the chemometric tools used are experimental design, principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), partial least squares regression (PLS) and parallel factor analysis (PARAFAC). The analytical techniques utilised are scanning ultraviolet-visible (UV-Vis) spectroscopy, diode array detection (DAD) used in non-column chromatographic diode array UV spectroscopy, high-performance liquid chromatography with diode array detection (HPLC-DAD) and fluorescence spectroscopy. The methods proposed are exemplified in the analysis of pharmaceutical solutions and serum proteins.</p><p>In Paper I a method is proposed for the determination of the content and identity of the active compound in pharmaceutical solutions by means of UV-Vis spectroscopy, orthogonal signal correction and multivariate calibration with PLS and SIMCA classification. Paper II proposes a new method for the rapid determination of pharmaceutical solutions by the use of non-column chromatographic diode array UV spectroscopy, i.e. a conventional HPLC-DAD system without any chromatographic column connected. In Paper III an investigation is made of the ability of a control sample, of known content and identity to diagnose and correct errors in multivariate predictions something that together with use of multivariate residuals can make it possible to use the same calibration model over time. In Paper IV a method is proposed for simultaneous determination of serum proteins with fluorescence spectroscopy and multivariate calibration. Paper V proposes a method for the determination of chromatographic peak purity by means of PCA of HPLC-DAD data. In Paper VI PARAFAC is applied for the decomposition of DAD data of some partially separated peaks into the pure chromatographic, spectral and concentration profiles. </p>
|
Page generated in 0.0269 seconds