• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 533
  • 320
  • 205
  • 139
  • 63
  • 48
  • 37
  • 27
  • 22
  • 21
  • 16
  • 14
  • 7
  • 4
  • 4
  • Tagged with
  • 1662
  • 363
  • 218
  • 177
  • 146
  • 130
  • 122
  • 114
  • 108
  • 107
  • 107
  • 89
  • 76
  • 73
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Polyester Based Hybrid Organic Coatings

Wang, Xiaojiang 20 July 2012 (has links)
No description available.
342

Development of a Skin Explant Model for Studying UV-induced DNA damage and carcinogenesis

Payne, Hailey 17 May 2023 (has links)
No description available.
343

Modeled And Observed N2 Lyman-birge-hopfield Band Emissions Earth's Dayglow: A Comparison

Murray, Donald 01 January 2007 (has links)
Ultraviolet (UV) spectra obtained from Earth’s dayglow contain important information for understanding the thermosphere, and the N2 Lyman-Birge-Hopfield (LBH) bands are possibly the most useful emission. To be useful, a thorough understanding of how the LBH band emission varies with altitude and latitude is essential to present and future use of this emission by space-based remote sensors. Excited by photoelectron impact on N2 leading to transitions from the a 1Πg state to the ground state, the LBH emissions radiate between 1270 and 2400 Å. In addition to being populated by electron impact excitation, the a 1Πg state is populated by radiative and collisional cascading from adjacent singlet states a’ 1Σ−u, and w 1∆u (Eastes, 2000). Ultimately, the intensity is most dependent on low energy electron flux (Ajello and Shemansky, 1985; Meier, 1991) because that is where the electron impact scattering cross sections of the singlet states are the largest. This dissertation presents modeled LBH profiles produced using the Intrasystem Cascade Excitation (ICE) model (Eastes, 2000) with photoelectron fluxes calculated using the Continuous Slowing Down (CSD) model (Jasperse, 1976). Both of these models implement the Mass Spectrometer and Incoherent Scatter (MSIS) to model an atmosphere. Modeled emissions are compared against observations by the High resolution Ionospheric and Thermospheric Spectrograph (HITS) on the Advanced Research and Global Observation Satellite (ARGOS). This dissertation will investigate the LBH emissions in detail and ultimately use them for remote sensing of thermospheric temperatures.
344

Prevention Of Environmentally Induced Degradation In Carbon/epoxy Composite Material Via Implementation Of A Polymer Based Coati

Tipton, Bradford 01 January 2008 (has links)
As the use of fiber reinforced plastics increases in such industries as aerospace, wind energy, and sporting goods, factors effecting long-term durability, such as environmental exposure, are of increasing interest. The primary objectives of this study were to examine the effects of extensive environmental exposure (specifically UV radiation and moisture) on carbon/epoxy composite laminate structures and to determine the relative effectiveness of polymer-based coatings at mitigating degradation incurred due to such exposure. Carbon/epoxy composite specimens, both coated and uncoated, were subjected to accelerated weathering in which prolonged outdoor exposure was simulated by controlling the radiation wavelength (in the UV region), temperature, and humidity. Mechanical test data obtained for the uncoated specimens indicated a reduction in strength of approximately 6% after an environmental exposure duration of 750 hours. Test data revealed that no further degradation occurred with increased exposure duration. This reduction resulted from the erosion of the epoxy matrix in additional to the formation of matrix microcracks. The protective coatings evaluated were all epoxy based and included two different surfacing films applied during initial cure of the carbon/epoxy composite laminate and a chromate containing epoxy based paint primer applied after the cure was complete. Although the chromate primer performed well initially, degradation of the underlying substrate was detected with extended exposure durations. In contrast, the surfacing films provided superior protection against environmentally induced degradation. Although similar degradation attributes were identified in the surfacing film as observed in the uncoated composite, it is likely that this degradation was either confined within the surfacing film layer or only penetrated the very near surface of the carbon/epoxy substrate, as it did not result in a substantial reduction in mechanical strength.
345

The Use of Sphingomyelin to Protect Against UV Induced DNA Damage in Human Keratinocytes

Campbell, Kevin 01 June 2015 (has links) (PDF)
Non melanoma skin cancer (NMSC) is a serious condition caused by chronic ultraviolet (UV) exposure that leads to DNA damage in skin. UV radiation has the potential to lead to DNA damage, which triggers biochemical pathways within a cell. The result is that the cell either undergoes cell cycle arrest, giving the cell time to repair DNA damage, or apoptosis. Sunscreen is the most commonly used treatment for preventing UV induced skin damage, but it involves a number of undesirable and toxic side effects including damaging the dermis, premature aging of skin and underweight child births. This has led to interest in finding safer alternatives to prevent UV damage without the negative side effects of sunscreen. In particular, bovine milk sphingomyelin (SM) is a compound that has the potential to protect against UV damage without any of the dangerous side effects of sunscreen. Here we present the use of SM for UV protection of human keratinocytes (KRTs) to prevent DNA mutations that result from UV exposure. In particular, analysis of the expression of DNA damage biomarkers p21 and p53 was done to determine the potential of SM to prevent DNA damage associated with UV exposure. Both non-SM treated KRTs and KRTs treated with 0.1% SM media 24 hours prior to UV radiation were fixed and IF-stained at 24 hours following 40 mJ/cm2 of UV exposure. Significant differences in both p21 and p53 were observed between the SM treated and non-SM treated cells at the UV dosage level (via t-test; p
346

A quantitative method for evaluating the photoreactivation of ultraviolet damaged microorganisms.

Beggs, Clive B. January 2002 (has links)
The lethal effect of ultraviolet (UV) light on microorganisms is well known and many studies have been undertaken into the effects of UV induced damage. Most of this work has been experimental; by comparison relatively little theoretical work has been undertaken to analyse the kinetics of the UV inactivation process, or to develop quantitative methodologies to support the experimental work. This paper presents a new and simple model for quantifying the photolysis rate. A theoretical study is also presented in this paper which quantifies photolysis rates for E. coli O26 and E. coli O157:H7. This study uses experimental data collected by Tosa and Hirata, and reveals the photolysis rate for E. coil O26 during the UV irradiation process to be 4.69 x 10(-3) m2 J(-1). By comparison, E. coli O157:H7 is much more susceptible to UV induced damage than E. coli O26, having a photolysis constant of only 2.09 x 10(-3) m2 J(-1).
347

THE SELECTIVITY OF UV-LIGHT ACTIVATED METAL OXIDE SEMICONDUCTOR GAS SENSORS MANIFESTED BY TWO COMPETING REDOX PROCESSES

Li, Wenting 11 1900 (has links)
The selectivity mechanism of the UV-light activated metal oxide semiconductor (MOS) gas sensors was studied. A reaction model based on two competing redox processes was presented to solve the selectivity problem. A concept named dynamic equilibrium of adsorbed oxygen concentration was brought about in this model and two reaction responses were discussed: (1) when most of the MOS surface is adsorbed with oxygen, the resistance of the MOS gas sensor will decrease upon the injection of reducing agents (RAs); (2) when most of the MOS surface is not adsorbed with oxygen, the resistance of the MOS gas sensor will increase upon the injection of RAs. Finally, experiments were conducted on ZnO MOS gas sensors to prove the proposed hypothesis of the reaction mechanism. / Thesis / Master of Applied Science (MASc)
348

Application of UV-Vis Spectroscopy to the Monitoring, Characterization and Analysis of Chemical Equilibria of Copper Etching Baths

Lambert, Alexander S. 08 1900 (has links)
The continuously increasing demand for innovation in the miniaturization of microelectronics has driven the need for ever more precise fabrication strategies for device packaging, especially for printed circuit boards (PCBs). Subtractive copper etching is a fundamental step in the fabrication process, requiring very precise control of etch rate and etch factor. Changes in the etching chemical equilibrium have significant effects on etching behavior, and CuCl2 / HCl etching baths are typically monitored with several parameters including oxidation-reduction potential, conductivity, and specific gravity. However, the etch rate and etch factor can be difficult to control even under strict engineering controls of those monitoring parameters. The mechanism of acidic cupric chloride etching, regeneration and recovery is complex, and the current monitoring strategies can have difficulty controlling the interlocking chemical equilibria. A complimentary tool, thin-film UV-Vis spectroscopy, can be utilized to improve the current monitoring strategies, as UV-Vis is capable of identifying and predicting etching behavior that the current standard methodologies have difficulty predicting. Furthermore, as a chemically-sensitive probe, UV-Vis can investigate the complex changes to the chemical equilibrium and speciation of the etch bath, and can contribute overall to significant improvements in the control of the copper etching system in order to meet the demands of next-level design strategies.
349

Combined Ozone and Ultraviolet Inactivation of Escherichia Coli

Savant, Gaurav 02 August 2003 (has links)
The kinetics of Escherichia coli inactivation were studied using ultraviolet (UV) radiation, ozone, and UV and ozone (UVO) in combination in a batch reactor at varying pH levels (6, 7, and 8) and at a constant temperature of 25°C. The inactivation kinetics for all three treatment processes was pseudo first order, and the reaction rate constants were considered to be additive such that a combined reaction rate could be obtained by adding the kinetic rates of the processes applied and numerically small rates could be neglected in the computation of the combined rate. Statistical tests (ANOVA and student's t-test) performed on the inactivation data indicated no apparent effect of pH on the kinetics of the processes. It was found that the UVO process was the most efficient in inactivating E. coli. The increase in the inactivation rate with the UVO process is attributed to synergetic activity of UV and ozone which results in the generation of hydroxyl radicals from ozone decomposition.
350

Anticorrosion UV Curable Alkyds

Xu, Rongcheng, Xu January 2017 (has links)
No description available.

Page generated in 0.0248 seconds