• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication of Gapless Dual-Curvature Micro-lens Technique

Tzeng, Shiang-da 10 July 2007 (has links)
Light emitting diode (LED) will have development in liquid crystal display (LCD) backlight. Nevertheless, the point source of LED is not suitable for large size panel. Therefore, this research will change the package which is bullet type and design gapless dual-curvature micro lens (GDML). Using the optics software TracePro is simulation luminance to compare of hexagon, triangular and dual-curvature micro lens, and fabrication of the better size. We can get metal model using micro-electro-mechanical systems (MEMS) technology after electroforming and hot embossing. The micro lens is formed by UV cure in metal model. It has different curvature and fill factor 100%. The advantage of electroforming is can manufacture a lot of product fast with high performance. The shrinkage rate is less than 0.5%. The collocation package of micro lens and LED chip can improve intensity and uniformity.
2

Pigmented UV-Curable Alkyd

Chittavanich, Pongsith P. 23 December 2009 (has links)
No description available.
3

Anticorrosion UV Curable Alkyds

Xu, Rongcheng, Xu January 2017 (has links)
No description available.
4

Fabrication of Alumina Membranes From Uv Resin– Alumina Particle Slurries

Porcincula, Dominique Henry 01 December 2023 (has links) (PDF)
Ceramics membranes are made in a wide variety of different techniques using a wide variety of different materials. However, many of the common techniques utilize a slurry of ceramic particles, additives, and either organic solvent or water that is shaped into a membrane, left to dry, and then sintered together. Drying is a time consuming process, often requiring several hours for the liquid medium to evaporate. Defect formation caused by development of partial pressures across the drying membrane, including cracks and warpage, also typically occurs during the drying process. To address this, slurries of ceramic particles made with a low viscosity UV-curable resin, which can cure in the span of a few seconds, eliminating the need for drying and any defects associated with drying. Slurries were made with different particle sizes and volume fractions and made into thin membranes using an Autodesk Ember 3D printer. Curing of UV resin and slurries were examined with FTIR. Pyrolytic behavior of resin was examined using isothermal TGA. Cure depth profiles were determined using the modified Beer-Lambert Law and compared against models in literature. Results showed contrasting curing behavior based on volume fraction and particle size due to differences in UV light exposure methods.
5

PROCESS OPTIMIZATION OF PHOTOCURABLE POLYESTER GEL COAT AND LAMINATE

Crump, Larry Scott 11 June 2014 (has links)
No description available.
6

Antireflective Polyimide Based Films

Cao, Yuanmei 01 May 2012 (has links)
No description available.
7

Bismaleimide Methacrylated Polyimide-Polyester Hybrid UV-Curable Powder Coating

Hasheminasab, S. Abed 16 July 2020 (has links)
No description available.
8

Nanocomposite films for corrosion protection

Sababi, Majid January 2013 (has links)
This thesis describes technical and scientific aspects of new types of composite films/coatings for corrosion protection of carbon steel, composite films with nanometer thickness consisting of mussel adhesive protein (Mefp‐1) and ceria nanoparticles, and polymeric composite coatings with micrometre thickness consisting of conducting polymer and ceria nanoparticles in a UV‐curing polyester acrylate (PEA) resin. The influence of microstructure on corrosion behaviour was studied for a Fe‐Cr‐V‐N alloy containing micro‐sized nitrides with different chemical composition spread in martensitic alloy matrix. The Volta potential mapping suggested higher relative nobility for the nitride particles than the alloy matrix, and the nitrides with higher amounts of nitrogen and vanadium exhibited higher nobility. Potentiodynamic polarization measurements in a 0.1 M NaCl solution at neutral pH and ambient temperature showed passivity breakdown with initiation of localized corrosion which started in the boundary region surrounding the nitride particles, especially the ones enriched in Cr and Mo. Mefp‐1/ceria nanocomposite films were formed on silica and metal substrates by layer‐by‐layer immersion deposition. The film formation process was studied in situ using a Quartz Crystal Microbalance with Dissipation (QCM‐D). The film grows linearly with increasing number of immersions. Increasing Mefp‐1 concentration or using Mefp‐1 with larger size leads to more Mefp‐1 being deposited. Peak Force Quantitative Nanomechanical Mapping (Peak Force QNM) of the composite films in air indicated that the elastic modulus of the film increased when the film deposited had a higher Mefp‐1 concentration. It was also noted that the nature of the outermost layer can affect bulk morphology and surface mechanical properties of the film. The QCM‐D study of Mefp‐1 on an iron substrate showed that Mefp‐1 adsorbs at a high rate and changes its conformation with increasing adsorption time. The QCM‐D and in situ Peak Force QNM measurements showed that the addition of Fe3+ ions causes a transition in the single Mefp‐1 layer from an extended and soft layer to a denser and stiffer layer. In situ ATR‐FTIR and Confocal Raman Microscopy (CRM) analyses revealed complex formation between Fe3+ and catechol groups in Mefp‐1. Moreover, optical microscopy, SEM and AFM characterization of the Mefp‐1/ceria composite film formed on carbon steel showed micron‐size aggregates rich in Mefp‐1 and ceria, and a nanostructure of well dispersed ceria particles in the film. The CRM analysis confirmed the presence of Mefp‐1/Fe complexes in the film. Electrochemical impedance microscopy and potentiodynamic polarization measurements showed that the Mefp‐1/ceria composite film can provide corrosion protection for carbon steel, and that the protection efficiency increases with exposure time. Composite coatings of 10 μm thickness composed of a UV‐curing PEA resin and a small amount of conductive polymer and ceria nanoparticles were coated on carbon steel. The conductive polymer (PAni) was synthesized with phosphoric acid (PA) as the dopant by chemical oxidative polymerization. The ATR‐FTIR and SEM analyses confirmed that the added particles were well dispersed in the coatings. Electrochemical measurements during long exposure in 0.1 M NaCl solution, including open circuit potential (OCP) and EIS, were performed to investigate the protective performance of the coatings. The results showed that adding ceria nanoparticles can improve the barrier properties of the coating, and adding PAni‐PA can lead to active protection of the coating. Adding PAni‐PA and ceria nanoparticles simultaneously in the coating can improve the protection and stability of the composite coating, providing excellent corrosion protection for carbon steel. / <p>QC 20131024</p>
9

Toward an energy self-sufficient paint shop

Mohammadpour, Violet, Hane, Oskar January 2020 (has links)
As manufacturing is creating welfare and prosperity, it is important for humankind. Nevertheless, manufacturing is causing the depletion of natural resources, environmental burdens affecting the health of animals, humans and eco-systems, and social conflicts. Thus, it is essential to implement sustainability into manufacturing. Paint shops are however known for being liable for a big part of the large energy consumptions within manufacturing. Therefore, it is necessary to investigate what cost-effective solutions can be implemented in paint shops in order to reduce the energy consumption in a sustainable manner. Hence, the aim of this study was to, from a manufacturing perspective identify possible cost-effective solutions for lowering energy consumption within paint shops. The aim was further divided into two research questions: • RQ1: What are the enablers for energy efficient paint shops? • RQ2: What are the challenges for energy efficient paint shops? The research approach used to answer the aim and research questions were a literature review and a case study. The literature review was performed to get a deeper understanding of the subject and was then complimented with the findings from the case study. The case study was performed at the paint shop of a global automotive manufacturing company in Sweden, which currently have a high energy consumption. The enablers identified were (1) implementation of solar photovoltaic, and an energy storage system, which enables an environmentally friendly way of generating energy on-site and store excess energy for later use. The energy storage system can also be used to save money by utilizing the fluctuating electricity market prices, charging the battery when the energy price is at its lowest. (2) Implementation of an UV-curing system and paint, which is an environmentally harmless method of curing paint. (3) Reducing or disabling the heating, ventilation and air conditioning system of a building when it is not a necessity. (4) Workers commitment and motivation towards sustainability, to ensure everyone’s participation. The challenges identified were (1) the expensiveness of sustainability, allocating and prioritizing it in budgets is challenging for a company since profitability is always a major concern that often overshadows sustainability. (2) The risk of modifying the processes within the paint shop, as the consequences are unexplored. (3) In its current state, the energy consumption of the paint shop is very high, it is hence difficult to provide the whole paint shop with solely solar photovoltaic. (4) An energy storage system requires space and freeing up that space is a challenge without reconstructing existing facilities. (5) With implementation of UV- curing, the paint used must be curable with UV-light. Additionally, complex three-dimensional shapes make it challenging to properly cure evenly with UV-curing. (6) It is not guaranteed whether it is possible to completely shut down heating, ventilation and air conditioning since industrial equipment in general is designed to always run. (7) Sustainability is not a focus and even if it is increasingly requested by society, the commitment of companies is experienced as low. It is challenging to motivate all the employees to work towards sustainability and find ways to always keep sustainability in mind and to prioritize it over other alternatives.
10

Enhanced adhesives for the encapsulation of flexible organic photovoltaic modules / Adhésifs améliorés pour l'encapsulation des modules organiques photovoltaïques flexibles

Boldrighini, Patrick Mark 30 June 2015 (has links)
La limitation de perméation des gaz aux bordes de l’encapsulation des photovoltaïques organiques flexibles a été adressée par l’identification des chemins de perméation du vapeur d’eau et par la formulation des nanocomposites adhésives. Une version modifiée du test de calcium optique a été développée pour identifier l’importance des chemins de perméation différents présent dans l’encapsulation des modules photovoltaïques organiques flexibles. Les nanoparticules des phyllosilicates et les nanoparticules des zéolithes ont été dispersées dedans les formulations des adhésifs différents incluant les adhésifs acryliques sensibles à pression et les adhésifs UV réticulables. Les propriétés mécaniques, optiques, et barrières de vapeur d’eau des nanocomposites ont été caractérisés en plus de leur photo-stabilité sous irradiation UV. Les nanocomposites ont été également utilisés pour encapsuler les cellules photovoltaïques organiques et la stabilité des dispositifs a été évaluer sous les conditions de vieillissement accélérés d’humidité et température. / In order to address the issue of lateral water and oxygen permeation through the sides of the encapsulation and into flexible organic photovoltaic (OPV) devices, the water vapor permeation pathways were identified and several adhesive nanocomposites formulated and tested to limit these pathways. To identify the relative importance of the various water vapor permeation pathways present in the encapsulation of flexible OPV devices, a modified version of the optical calcium test was developed. Passive nanoparticles (phyllosilicates) and active nanoparticles (zeolites) were both evaluated dispersed in UV curing acrylate adhesives and acrylic block copolymer pressure sensitive adhesives. The nanocomposites were characterized for their mechanical and optical properties as well as their water vapor permeation and UV photostability. The adhesives were also used to encapsulate OPV devices and tested in accelerated humidity aging.

Page generated in 0.0554 seconds